
MSP430 Family Purpose and convention

MSP430 Family
Architecture Guide and Module Library

Purpose and convention MSP430 Family

MSP430 Family Purpose and convention

Purpose and convention MSP430 Family

MSP430 Family

Architectural Overview

System Reset, Interupts and Operating Modes

Memory Organization

CPU, 16-bit

Hardware Multiplier

Oscillator and System Clock Generator

Digital I/O Configuration

Universal Timer/Port Module

Timers

Timer_A

USART Peripheral Interface, UART Mode

USART Peripheral Interface, SPI Mode

Liquid Crystal Display Drive

Analog-To-Digital Converter

Miscellaneous Modules

Appendix A, Peripheral File Map

Appendix B, Instruction Set

Appendix C, EPROM Programming

Index

MSP430 Family Purpose and convention

Purpose and convention MSP430 Family

Contents

Topic Page

1 MSP430 Family 1-1

1.1 Features and Capabilities 1-2

1.2 System Key Features 1-3

1.3 MSP430 Family Devices 1-4

2 Architectural Overview 2-1

2.1 CPU 2-3

2.2 Code Memory 2-4

2.3 Data Memory (RAM) 2-4

2.4 Control of operation 2-5

2.5 Peripherals 2-5

2.6 Oscillator, Frequency Multiplier and Clock Generator 2-6

MSP430 Family Purpose and convention

3 System Reset, Interrupts and Operating Modes 3-1

3.1 System Reset & Initialization 3-3

3.2 Global Interrupt Structure 3-4

3.3 Interrupt Processing 3-8
3.3.1 Interrupt Control Bits in Special Function Registers SFRs 3-10
3.3.2 External Interrupts 3-14

3.4 Operating Modes 3-16

3.5 Low Power Modes 3-19
3.5.1 Low Power Mode 0 and 1, LPM0 and LPM1 3-20
3.5.2 Low Power Mode 2 and 3, LPM2 and LPM3 3-20
3.5.3 Low Power Mode 4, LPM4 3-21

3.6 Basic Hints for Low Power Applications 3-21

4 Memory Organization 4-1

4.1 Data in the Memory 4-5

4.2 Internal ROM Organization 4-6
4.2.1 Processing of ROM Tables 4-6
4.2.2 Computed Branches and Calls 4-7

4.3 RAM and Peripheral Organization 4-7

Purpose and convention MSP430 Family

4.3.1 RAM 4-7
4.3.2 Peripheral Modules - Address Allocation 4-9
4.3.3 Peripheral Modules - Special Function Registers SFRs 4-11

5 CPU, 16bit 5-1

5.1 CPU Registers 5-3
5.1.1 The Program Counter PC 5-3
5.1.2 The System Stack Pointer SP 5-4
5.1.3 The Status Register SR 5-6
5.1.4 The Constant Generator Registers CG1 and CG2 5-8

5.2 Addressing modes 5-9
5.2.1 Register mode 5-10
5.2.2 Indexed mode 5-11
5.2.3 Symbolic mode 5-12
5.2.4 Absolute mode 5-13
5.2.5 Indirect mode 5-14
5.2.6 Indirect autoincrement mode 5-15
5.2.7 Immediate mode 5-16
5.2.8 Clock cycles, Length of Instruction 5-17

5.3 Instruction set overview 5-19
5.3.1 Double operand instructions 5-20

MSP430 Family Purpose and convention

5.3.2 Single operand instructions 5-21
5.3.3 Conditional Jumps 5-22
5.3.4 Short form of emulated instructions 5-23
5.3.5 Miscellaneous 5-24

5.4 Instruction map 5-25

6 Hardware Multiplier 6-1

6.1 Hardware Multiplier Operation 6-4

6.2 Hardware Multiplier Registers 6-9

6.3 Hardware Multiplier Special Function bits 6-10

6.4 Hardware Multiplier Software Restrictions 6-10
6.4.1 Hardware Multiplier Software Restrictions - Address mode 6-10
6.4.2 Hardware Multiplier Software Restrictions - Interrupt Routines 6-11

7 Oscillator and System Clock Generator 7-1

7.1 Crystal Oscillator 7-4

7.2 Processor Clock Generator 7-4

7.3 System Clock Operating Modes 7-7

Purpose and convention MSP430 Family

7.4 System Clock Control Register 7-9
7.4.1 General Module Registers 7-9
7.4.2 Special function register bits, System Clock Generator related 7-10

7.5 DCO Characteristic - typical 7-12

8 Digital I/O Configuration 8-1

8.1 General Port P0 8-3
8.1.1 Port P0 Control Registers 8-4
8.1.2 Port P0 Schematic 8-7
8.1.3 Port P0 interrupt control functions 8-11

8.2 General Ports P1, P2 8-12
8.2.1 Port P1, Port P2 Control Registers 8-13
8.2.2 Port P1, Port P2 Schematic 8-16
8.2.3 Port P1, P2 interrupt control functions 8-17

8.3 General Ports P3, P4 8-18
8.3.1 Port P3, Port P4 Control Registers 8-19

MSP430 Family Purpose and convention

8.3.2 Port P3, Port P4 Schematic 8-20

8.4 LCD Ports 8-22

8.5 LCD Port - Timer/Port Comparator 8-23

9 Universal Timer/Port Module 9-1

9.1 Timer/Port Module Operation 9-4
9.1.1 Timer/Port Counter TPCNT1, 8-bit Operation 9-4
9.1.2 Timer/Port Counter TPCNT2, 8-bit operation 9-4
9.1.3 Timer/Port Counter , 16-bit operation 9-5

9.2 Timer/Port Registers 9-6

9.3 Timer/Port Special Function bits 9-9

9.4 Timer/Port in ADC Application 9-11
9.4.1 Principle of conversion, R/D 9-11
9.4.2 Conversion with Resolution of >8 bit 9-14

10 Timers 10-1

10.1 Basic Timer1 10-3
10.1.1 Basic Timer1 Register 10-4
10.1.2 Special function register bits 10-6

Purpose and convention MSP430 Family

10.1.3 Basic Timer1 Operation 10-6
10.1.4 Basic Timer1 Operation: Signal fLCD 10-7

10.2 8-bit Interval Timer/Counter 10-9
10.2.1 Operation of 8-bit Timer/Counter 10-10
10.2.2 8-bit Timer/Counter Registers 10-11
10.2.3 Special function register bits, 8-bit Timer/Counter related 10-13
10.2.4 8-bit Timer/Counter in UART Applications 10-13

10.3 The Watchdog Timer 10-29
10.3.1 Watchdog Timer Register 10-30
10.3.2 Watchdog Timer interrupt control functions 10-32
10.3.3 Watchdog Timer Operation 10-32

10.4 8-bit PWM Timer 10-35
10.4.1 Operation 10-36
10.4.2 PWM Register Descriptions 10-37

11 Timer_A 11-1

11.1 Operation of Timer_A 11-3
11.1.1 Timer Operation 11-5
11.1.2 The Capture Mode 11-12
11.1.3 The Compare Mode 11-14

MSP430 Family Purpose and convention

11.1.4 The Output Unit 11-14

11.2 Registers of Timer_A 11-17
11.2.1 Timer_A Control Register TACTL 11-18
11.2.2 Capture/Compare Control Register CCTL 11-20
11.2.3 Timer_A Interrupt Vector Register 11-23

11.3 Timer_A in Applications 11-28
11.3.1 Timer_A - Use of the UP-Mode 11-28
11.3.2 Timer_A - Use of the Continuous Mode 11-29
11.3.3 Timer_A - Use of the UP/DOWN Mode 11-32
11.3.4 Timer_A - Capture via Software 11-34
11.3.5 Timer_A - Handle asynchronous serial protocol 11-35

11.4 Timer_A special conditions 11-38
11.4.1 CCR0, used for period register 11-38
11.4.2 Start/Stop of the Timer Register 11-39
11.4.3 Output Unit0 11-40

12 USART Peripheral Interface, UART Mode 12-1

12.1 Asynchronous Operation 12-2
12.1.1 Asynchronous Frame Format 12-2
12.1.2 Baud rate generation in asynchronous communication format 12-3

Purpose and convention MSP430 Family

12.1.3 Asynchronous Communication Formats 12-6
12.1.4 Idle line multiprocessor mode 12-6
12.1.5 Address bit Format 12-9

12.2 Interrupt and Control Function 12-10
12.2.1 USART Receive Enable 12-10
12.2.2 USART Transmit Enable 12-11
12.2.3 USART Receive Interrupt Operation 12-12
12.2.4 USART Transmit Interrupt Operation 12-13

12.3 Control and Status Register 12-14
12.3.1 USART Control register UCTL 12-14
12.3.2 Transmit Control Register UTCTL 12-16
12.3.3 Receive Control Register URCTL 12-17
12.3.4 Baud Rate Select and Modulation Control Registers 12-19
12.3.5 USART Receiver Data Buffer URXBUF 12-20
12.3.6 USART Transmit Data Buffer UTXBUF 12-20

12.4 UART Mode, Utilizing Features of low power Modes 12-21
12.4.1 Start Receive Operation from UART Frame 12-21
12.4.2 Maximum Utilization of Clock Frequency vs. Baud Rate UART Mode 12-23
12.4.3 Support of multiprocessor modes for reduced use of MSP430 resources 12-24

12.5 Baud Rate Considerations 12-24

MSP430 Family Purpose and convention

13 USART Peripheral Interface, SPI Mode 13-1

13.1 USART’s Synchronous Operation 13-2
13.1.1 Master Mode in Synchronous USART Mode, MM=1, SYNC=1 13-4
13.1.2 Slave Mode in SPI Mode, MM=0, SYNC=1 13-5

13.2 Interrupt and Control Function 13-6
13.2.1 USART Receive Enable 13-6
13.2.2 USART Transmit Enable 13-8
13.2.3 USART Receive Interrupt Operation 13-10
13.2.4 USART Transmit Interrupt Operation 13-11

13.3 Control and Status Register 13-12
13.3.1 USART Control register 13-12
13.3.2 Transmit Control Register UTCTL 13-13
13.3.3 Receive Control Register URCTL 13-15
13.3.4 Baud Rate Select and Modulation Control Registers 13-15
13.3.5 USART Receive Data Buffer URXBUF 13-16
13.3.6 USART Transmit Data Buffer UTXBUF 13-16

14 Liquid Crystal Display Drive 14-1

14.1 Basics of LCD Drive 14-3

14.2 LCD Controller/Driver 14-8

Purpose and convention MSP430 Family

14.2.1 LCD Controller/Driver Functions 14-9
14.2.2 LCD Control & Mode Register 14-12
14.2.3 LC Display Memory 14-14
14.2.4 Software Examples for LCD Operation 14-19

14.3 LCD Port Function 14-25

14.4 Application Example showing mixed LCD and Port Mode 14-27

15 Analog-To-Digital Converter 15-1

15.1 Overview 15-3

15.2 Analog-to-Digital Operation 15-5
15.2.1 A/D Conversion 15-5
15.2.2 A/D Interrupt 15-9
15.2.3 A/D Ranges 15-10
15.2.4 A/D Current Source 15-11
15.2.5 Analog Inputs and Multiplexer 15-12
15.2.6 A/D Grounding and Noise Considerations 15-13
15.2.7 A/D Converter Input and Output Pins 15-15

15.3 ADC Control Registers 15-15

MSP430 Family Purpose and convention

16 Miscellaneous Modules 16-1

16.1 Crystal Oscillator 16-3

16.2 Power-on Circuitry 16-4

16.3 Crystal Buffer Output 16-5

A. Peripheral File Map A-1

B. Instruction Set Description B-1

C. EPROM Programming C-1

Purpose and convention MSP430 Family

Figures

Fig. Title Page

2.1 MSP430 system configuration 2-3

2.2 Bus connection of modules/peripherals 2-5

3.1 System Reset Functions 3-3

3.2 Interrupt Priority Scheme 3-5

3.3 Reset/NMI-mode selection 3-6

3.4 Status Register SR 3-9

4.1 Total Memory Address Space 4-3

4.2 Memory Map of Basic Address Space 4-4

4.3 Bit, Byte and Word in a byte organized Memory 4-5

4.4 ROM Organization 4-6

4.5 Byte and Word Operation 4-8

4.6 Example of RAM/peripheral organization 4-10

4.7 Peripheral File Address Map - Word Modules 4-10

MSP430 Family Purpose and convention

4.8 Peripheral File Address Map - Byte Modules 4-11

4.9 Special Function Register Address Map - Byte Modules 4-12

5.1 Program Counter PC 5-4

5.2 System Stack Pointer SP 5-4

5.3 Stack Usage 5-6

5.4 Status Register SR 5-6

5.5 Double Operand Instruction Format 5-20

5.6 Single Operand Instruction Format 5-21

5.7 Conditional Jump Instruction Format 5-22

5.8 Core instruction map 5-25

6.1 Connection of the Hardware Multiplier Module to the Bus System 6-3

6.2 Registers of the Hardware Multiplier 6-9

7.1 Principle of Clock Generation 7-3

7.2 Status Register SR 7-4

7.3 System frequency vs. time 7-5

7.4 Schematic of system frequency generator 7-6

7.5 DCO Characteristics 7-12

Purpose and convention MSP430 Family

8.1 Port P0 Configuration 8-3

8.2 Schematic of bits P0.7 to P0.3 8-7

8.3 Schematic of bit P0.2 8-8

Fig. Title Page

8.4 Schematic of bit P0.1 8-9

8.5 Schematic of bit P0.0 8-10

8.6 Port P1, Port P2 Configuration 8-12

8.7 Schematic of one bit in Port P1, P2 8-16

8.8 Port P3, Port P4 Configuration 8-18

8.9 Schematic of bits P3.x/P4.x 8-20

8.10 Schematic of LCD pin configuration 8-22

8.11 Schematic of LCD pin - Timer/Port Comparator 8-23

9.1 Timer/Port configuration 9-3

9.2 Timer/Port counter, 16-bit operation 9-5

9.3 Timer/Port Control Register 9-6

9.4 Timer/Port Counter Registers 9-8

MSP430 Family Purpose and convention

9.5 Timer/Port Data Register 9-8

9.6 Timer/Port Enable Register 9-9

9.7 Timer/Port Interrupt Scheme 9-10

9.8 Conditions for Timer/Port Interrupt request 9-10

9.9 Charge-Discharge timing of RC 9-11

9.10 Charge-Discharge timing during R/D conversions using Rref and Rmeas 9-12

9.11 Principle Conversion Scheme 9-13

9.12 ADC Application example 9-14

10.1 Basic Timer Configuration 10-3

10.2 Basic Timer1 Register 10-4

10.3 Basic Timer1 Register Function 10-5

10.4 Frequency Select for LCD (Example for 3MUX) 10-7

10.5 Principle Schematic of 8-bit Timer/Counter 10-9

10.6 Schematic of 8-bit Counter 10-10

10.7 8-bit Timer/Counter Control Register 10-11

10.8 Asynchronous communication format 10-13

10.9 Scanning of the asynchronous bits of one frame 10-14

Purpose and convention MSP430 Family

10.10 Transmitting of the asynchronous bits of one frame 10-14

10.11 UART idle period 10-15

10.12 Idle line multiprocessor protocol 10-16

10.13 Idle line multiprocessor protocol 10-17

10.14 8-bit Timer/Counter config. for transmit example 2400Baud, ACLK clock 10-20

10.15 8-bit Timer/Counter config. for receive example 2400Baud, ACLK clock 10-24

Fig. Title Page

10.16 Schematic of Watchdog Timer 10-29

10.17 Watchdog Timer Control Register 10-30

10.18 Block Diagram of PWM Timer 10-35

10.19 PWM timing scheme 10-36

11.1 Schematic of Timer_A 11-4

11.2 Schematic of 16-bit Timer 11-5

11.3 Schematic of Clock Source Select and Input Divider 11-6

11.4 Schematic of Timer and Mode Control 11-6

11.5 Capture/Compare Block 11-10

MSP430 Family Purpose and convention

11.6 Output Unit 11-14

11.7 Output Unit: Example Up-Mode and Output Mode 3 11-15

11.8 Output Unit: Example Continuous Mode and Output Mode 3 11-16

11.9 Output Unit: Example Up/Down Mode and Output Mode 4 11-16

11.10 Capture/Compare Interupt Flag 11-23

11.11 Schematic of Capture/Compare Interupt Vector Word 11-25

11.12 Output Unit in Up Mode 11-29

11.13 Output Unit in Continuous Mode 11-30

11.14 Output Unit in UP/DOWN Mode(I) 11-33

11.15 Output Unit in UP/DOWN Mode (II) 11-34

11.16 Software Capture Example 11-35

11.17 Timer_A used to handle asynchronous protocol 11-36

11.18 Timer_A, timing for asynchronous protocol handling 11-37

12.1 Block diagram of USART 12-3

12.1 Block diagram of USART - UART mode 12-1

12.2 Asynchronous frame format 12-2

12.3 Asynchronous bit format. Example for n or n+1 clock periods 12-2

Purpose and convention MSP430 Family

12.4 Standard baudrate generation - other than MSP430 12-3

12.5 MSP430 Baud Rate Generation. Example for n or n+1 clock periods 12-4

12.6 Idle line multiprocessor protocol 12-6

12.7 USART Receiver Idle Detect 12-7

12.8 Double-Buffered WUT and TX Shift Register 12-7

12.9 USART Transmitter Idle Generation 12-8

12.10 Address bit multiprocessor protocol 12-9

12.11 State diagram on Receiver enable URXE 12-10

12.12 State diagram on Transmitter enable 12-11

Fig. Title Page

12.13 Receive Interrupt Conditions 12-12

12.14 Transmit Interrupt Condition 12-13

12.15 USART Control Register UCTL 12-14

12.16 USART Transmitter Control Register 12-16

12.17 USART Rceiver Control Register 12-17

12.18 USART Baud Rate Select Register 12-19

MSP430 Family Purpose and convention

12.19 USART Modulation Control Register 12-19

12.20 USART Receive Buffer 12-20

12.21 USART Transmit Buffer 12-20

12.22 Receive Start Conditions 12-21

12.23 Receive Start Timing using URXS flag, startbit accepted 12-22

12.24 Receive Start Timing using URXS flag, startbit not accepted 12-22

12.25 Receive Start Timing using URXS flag, glitch suppression 12-22

12.26 MSP430 Transmit Bit Timing 12-25

12.27 MSP430 Transmit Bit Timing Errors 12-25

13.1 Block diagram of USART - SPI mode 13-1

13.2 MSP430 USART as Master, external device with SPI as slave 13-2

13.3 MSP430 USART as Slave in 3 pin or 4pin configuration 13-4

13.4 State diagram on Receiver enable URXE. MSP430 is master 13-6

13.5 State diagram on Receiver enable URXE. MSP430 is slave/3pin mode 13-7

13.6 State diagram on Receiver enable URXE. MSP430 is slave/4pin mode 13-7

13.7 State diagram on Transmitter enable, MSP430 is master 13-8

13.8 State diagram on Transmitter enable, MSP430 is slave 13-8

Purpose and convention MSP430 Family

13.9 Receive Interrupt Conditions 13-10

13.10 State diagrams on receive interrupt 13-10

13.11 Transmit Interrupt Condition 13-11

13.12 USART Control Register 13-12

13.13 USART Transmitter Control Register 13-13

13.14 USART Clock Phase and Polarity 13-14

13.15 USART Transmitter Control Register 13-15

13.16 USART Baud Rate Select Register 13-15

13.17 USART Modulation Control Register 13-16

13.18 USART Receive Buffer 13-16

13.19 USART Transmit Buffer 13-16

Fig. Title Page

14.1 Example of static wave form drive 14-4

14.2 Example of 2MUX wave form drive 14-5

14.3 Example of 3MUX wave form drive 14-6

MSP430 Family Purpose and convention

14.4 Example of 4MUX wave form drive 14-7

14.5 LCD Controller/Driver Block Diagram 14-8

14.6 Internal analog voltage generated by LCD+ Module 14-10

14.7 External analog voltage applied to LCD Module 14-11

14.8 Information control 14-13

14.9 Bits of Display Memory attached to Segment lines 14-14

14.10 Use of Display Memory with the static driving method 14-15

14.11 Use of Display Memory with the 2MUX method 14-16

14.12 Use of Display Memory with the 3MUX method 14-17

14.13 Use of Display Memory with 4MUX method 14-18

14.14 Groups of Segment and Output Lines 14-25

14.15 Segment Line or Output Line 14-26

14.16 Application Example 14-27

15.1 ADC Module Configuration 15-4

15.2 ADC Schematic 15-7

15.3 ADC Timing, 12-bit conversion 15-8

15.4 ADC Timing, (12+2)-bit conversion 15-8

Purpose and convention MSP430 Family

15.5 ADC, input sampling timing 15-9

15.6 A/D Current Source 15-11

15.7 Analog Multiplexer 15-13

15.8 A/D Grounding and Noise Considerations 15-14

15.9 ADC Input Register, Input Register Enable 15-16

16.1 Crystal Oscillator schematic 16-3

16.2 Power-on reset and Power-up clear schematic 16-4

16.3 Power-on reset timing on fast VCC rise time 16-4

16.4 Power-on reset timing on slow VCC rise time 16-5

16.5 Schematic of Crystal Buffer 16-5

MSP430 Family Purpose and convention

Purpose and convention MSP430 Family

Tables

Table Title Page

1.1 MSP430 Family Feature Summary 1-9

3.1 Interrupt sources, flags and vectors 3-13

5.1 Register by functions 5-3

5.2 Values of constant generator CG1, CG2 5-8

12.1 Commonly used Baud Rates, Baudrate data and errors 12-5

12.2 Mostly used Baud Rates, Baudrate data and errors 12-27

MSP430 Family Purpose and convention

Purpose and convention MSP430 Family

MSP430 Family Purpose and convention

List of Notes

Note Title Page

Oscillator fault 3-4

NMI edge select 3-7

How the interrupts on digital ports P0, P1 and P2 are handled 3-16

Software stack pointer using general purpose registers 5-4

Addressing modes 5-9

Destination Address 5-19

DCO Taps 7-12

Writing to read only register P0IN 8-4

Interrupt Flags P0FLG.2...7 8-5

Change of P0IES bit(s) 8-5

Port0 interrupt sensitivity 8-6

Multiple Source interrupt flags P0IFG.2 to P0IFG.7 8-11

Writing to read only registers P1/P2ININ 8-13

Purpose and convention MSP430 Family

Interrupt Flags P1FLG.0...7, P2FLG.0...7 8-14

Change of P1IES, P2IES bit(s) 8-15

Port P1, Port P2 interrupt sensitivity 8-15

Multiple Source interrupt flags P1IFG.0 to P1IFG.7, P2IFG.0 to P2IFG.7 8-17

Writing to read only register P3IN, P4IN 8-19

UART protocol, LSB/MSB sequence 10-26

Timer_A Capture Register Write 11-12

Capture with Timer halted 11-13

Modify Timer_A 11-19

Changing of Timer_A Control bits 11-19

Simultaneous capture and capture mode selection 11-22

Writing to read only register TAIV 11-24

URXE re-enable, UART Mode 12-11

Write to UTXBUF, UART Mode 12-11

Mark, Space definition 12-15

Receive Status Control bits 12-18

Break detect BRK bit with halted UART clock 12-23

MSP430 Family Purpose and convention

USART Synchronous Master Mode, Receive initiation 13-4

URXE re-enable, SPI Mode 13-7

Write to UTXBUF, SPI Mode 13-9

LCD port output 14-27

ADC, Start-of-Conversion 15-5

Marked instructions are emulated instructions B-3

Operations using Status Register SR for destination B-6

Emulation of the following instructions B-8

Disable Interrupt B-31

Enable Interrupt B-33

Other instructions can be used to emulate no operation B-45

The system Stack Pointer 3 B-47

The system Stack Pointer 4 B-47

RLC substitution B-53

Borrow is treated as a .NOT. carry 4 B-61

Borrow is treated as a .NOT. carry 5 B-62

EPROM exposed to ambient light C-2

Purpose and convention MSP430 Family

MSP430 Family Purpose and convention

Purpose of guide, and conventions used

The MSP430 User's Guide is intended to assist the development of MSP430 family
products by sssemling together and presenting hardware and software information in a
manner which will be easy to use by engineers and programmers.

There follows a short description of the nomenclature conventions used for signals and
processor states:

• ADC Analog-to-Digital converter
• CPUOff mode Low power mode with RAM contents and I/O signals unchanged

Modules using auxiliary clock (32 768 Hz crystal) are active
• DCO Digital controlled oscillator
• LCD Liquid crystal display
• FF Flip-Flop
• MAB Memory address bus. This is the address bus between the individual

modules. It can be any width from 16 bits to 4 bits. Together with the
MS signal it defines the physical address.

• MDB Memory data bus. This is the data bus between the individual
modules. It can be 8 bits or 16 bits wide.

• MS Module select. This is the pre-decoded address space. Together with
the MAB it defines the physical address.

Purpose and convention MSP430 Family

• MSFR Module special function register. This is the pre-decoded address
space (0h to 0Fh) of the special function registers.

• OSCOff mode Lowest power mode. RAM contents and I/O signals are unchanged.
The crystal oscillator has stopped

• OTP One-time programmable
• POR Power-on reset
• PUC Power-up clea, "1" sets processor's start condition
• SAR Successive approximation register
• SCI Serial communication interface to handle synchronous and asynchro-

nous protocols
• SCG System clock generator
• SFR Special function register
• SPI Serial peripheral interface

(widely used synchronous serial communication protocol)
• TBD To be defined
• TOS Top of stack
• UART Universal asynchronous receive transmit

(most commonly-used serial communication protocol)
• USART Universal synchronous asynchronous receive transmit
• WD,WDT Watchdog, Watchdog Timer

MSP430 Family Purpose and convention

Bit Type Convention for Register Bit

• rw: read/write
• r: read only
• r0: read as '0'
• w: write only
• (w): no register bit implemented; writing a '1' will result in a pulse.

The register bit is always read as '0'.
• -0,-1: condition after PUC
• -(0),-(1): condition after POR
• h0: cleared by hardware

Symbols

Operations

@ Register indirect addressing
& Absolute address
--> Data transfer direction
+ Addition

Purpose and convention MSP430 Family

- Subtraction
x Multiplication
/ Division
.AND. logical AND
.OR. logical OR
.XOR. logical Exclusive-OR
.NOT. logical NOT

Register Symbols

R0 or PC Register 0 or Program Counter
R1 or SP Register 1 or Stack Pointer
R2 or SR/CG1 Register 2 or Status Register/Constant Generator 1
R3 or CG2 Register 3 or Constant Generator 2
R4 to R15 Working Register, general-purpose

Contents of Status Register

C Carry or borrow
Z Zero
N Negative
CPUOff CPU Off Bit
OscOff System Oscillator Off Bit

MSP430 Family Purpose and convention

GIE General Interrupt Enable
SCG0 System Clock Generator, Control Bit 0
SCG1 System Clock Generator, Control Bit 1
V Overflow

Purpose and convention MSP430 Family

Others

= Equal Sign
‡ Not Equal Sign
>, <,≥,≤ Comparison Signs
" " ASCII Character inside
h Hexadecimal Data
b Binary Data
Immediate Data
E Exponent
& Absolute Address Mode Indicator

Assembler Directives

.equ Equate command

.sect section directive

.word word data

.byte byte data
; comment indicator

MSP430 Family Purpose and convention

MSP430 Family MSP430 Family

1-1

1
1 MSP430 Family

This section discusses the features of the MSP430 family of controllers, having special
capabilities for analog processing control. All family members are software compatible,
allowing easy migration within the MSP430 family by maintaining a common software
base, and common design expertise and development tools.

The concept of a CPU designed for various applications with a 16-bit structure is
presented. It uses a "von-Neumann Architecture" and hence has RAM, ROM and all
peripherals in one address space.

Topic Page

1.1 Features and Capabilities 1-2

1.2 System Key Features 1-3

1.3 MSP430 Family Devices 1-4

MSP430 Family MSP430 Family

1-2

1
1.1 Features and Capabilities

• Up to 64K byte addressing space as needed, for allocation of ROM, RAM, EERAM
and peripherals as needed. Future expansion to 1M byte is planned.

• No limitation of interrupt and subroutine levels due to stack processing
• Only 3 instruction formats. Strong orthogonality without any exception
• 1word/instruction is used, as far as possible
• Seven address modes in the source
• Four address modes in the destination
• External interrupt pins: extended use of Input/Output pins for interrupt capability
• Prioritized interrupts: simultaneously occurring interrupts are handled prioritized)
• Nested interrupt structure: interrupt routines may be interrupted by higher priority

interrupts
• Memory mapped peripherals: all registers are in the modules - no RAM space is used
• USART on chip - see device configuration: separate interrupts for transmit and

receive
• Timer with interrupt for event counter, timing generation, PWM,
• Watchdog
• ADC (10 bits or more) with 8 inputs and current source
• EPROM version (OTP)
• LCD-driver
• Stable processor frequency using a FLL and a clock crystal of 32,768 Hz

MSP430 Family MSP430 Family

1-3

1

• Easy program development because of the orthogonal structure: all instructions with
all addressing modes

• C-compiler development has started
• Modular design concept: modules are strictly memory mapped

1.2 System Key Features

• Ultra-low current consumption: CPUOff and OscOff modes
• Full operation down to 2.5 V
• System building blocks: LCD-Drive, A/D-Converter, I/O-Ports, UART, Watchdog

Timer, EEPROM all on chip
• Only microcomputer mode; there is no microprocessor mode
• Ease of use

The powerful and convenient instruction set allows fast software development.
• Software may run in RAM

Programs loaded into the RAM via the UART or test paths..., can execute jobs under
real-time conditions. This reduces test costs and calibration expenses.

• Every ROM/RAM mix is possible in the common address range of 64k byte
• High level language (HLL) programming capabilities

Large register file (12 general purpose registers)

MSP430 Family MSP430 Family

1-4

1

Stack orientation
Large ROM and RAM spaces
Orthogonal instruction set, without any exceptions
Table processing orientation, due to addressing modes

• Fast hexadecimal-to-decimal conversion with special instruction DADD
• Instructions are commonly used for ROM references, RAM access, data handling,

I/Os and other peripherals: there are no special instructions!
• Potential of CPU far exceeds the requirements of intelligent sensor signal systems.

The real-time capability opens fields in other low power systems, including the usage
of other peripherals e.g. DTM transceiver for wired telecom

1.3 MSP430 Family Devices

The MSP430 family of devices can be summarized as follows:

• Nomenclature used:

MSP430 Family MSP430 Family

1-5

1

MSP430CxxxQFN

Package Code, 1 or 2 characters

Temperature range, 1 character

Q: customized

I:

A:

Unique number for each family member

or software number, 3 characters

Memory Code: C: CMOS, ROM version

P: OTP, on-time programmable - EPROM version

E: EPROM version, windowed package

S: SRAM, RAM version for code memory

-40 degree to +85 degree

-40 degree to +125 degree

•• Development tools include the software simulator DT430, assembler and linker
ASM430/LNK430 , C-compiler (under development) CS430/CW430, and hardware in-
circuit emulator ICE430. All development tools are PC-based using integrated desktop
features compatible with the windows SAA standard.

MSP430 Family MSP430 Family

1-6

1
The minimum requirements for the PC are:
IBM compatible
DOS 5.0 or later
Windows 3.1, 3.11 or ‘95
Personal computer with a 486 or higher processor running
8 MB of available memory
One 3.5" high-density disk drive
A hard disk with 5 MB available

MSP430 Family MSP430 Family

1-7

1
MSP430x310 MSP430x320 MSP430x330

Max. internal clock rate

Frequency of crystal

1.1 MHz @3V
3.3 MHz @5V

32.768 kHz

1.1 MHz @3V
2.2 MHz @5V

32.768 kHz

1.1 MHz @3V
2.2 MHz @5V

32.768 kHz

Operating Temperature -40oC to +85oC -40oC to +85oC -40oC to +85oC

Program memory
MSP430Cxxx:
MSP430Pxxx:
MSP430Exxx:
Memory expansion

4/8/12k byte ROM
8K byte OTP

8K byte wind. EPROM
NO

8K byte ROM
16K byte OTP

16K byte wind. EPROM
 NO

24K byte ROM
32K byte OTP

32K byte wind. EPROM
NO

Internal RAM 256/512 Bytes 256 Bytes 1024 Bytes

Data EEPROM No No No

MSP430 Family MSP430 Family

1-8

1
Modules
HW Multiply
Port0, 8-bit, all interrupt
Port1, 8-bit, all interrupt
Port2, 8-bit, all interrupt
Port3
Port4
Watchdog timer
Basic Timer1/Real time
clock
8-bit Timer/Counter
Timer/Port ,1x8-bit
Timer_A,16-bit
SPI
UART

LCD
ADC/Current source
DAC

No
Yes

Yes
Yes
Yes
Yes
Yes
No
No

(8b Tim./Cnt. + SW)

Max. 23x4 segments
Yes/Yes

No

No
Yes

Yes
Yes
Yes
Yes
Yes
No
No

(8b Tim./Cnt. + SW)

Max. 21x4 segments
see Timer/Port

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

USART, SPI mode
USART, UART mode

or (8b Tim./Cnt. + SW)
Max. 30x4 segments

see Timer/Port
No

I/O lines
Input lines
Output lines

9
1
27

9
7
25

40
1
34

MSP430 Family MSP430 Family

1-9

1
Interrupts/Reset
External
Vectors total
Sources total

11
16

11
16

1 + 24
16

Package Type 64 QFP 56 SSOP 100 QFP

Table 1.1: MSP430 Family Feature Summary

MSP430 Family Architectural Overview

2-1

2

2 Architectural Overview

This section describes the basic functions of a MSP430 based system.

Topic Page

2.1 CPU 2-3

2.2 Code Memory 2-4

2.3 Data Memory (RAM) 2-4

2.4 Control of operation 2-5

2.5 Peripherals 2-5

2.6 Oscillator, Frequency Multiplier and Clock Generator 2-6

Architectural Overview MSP430 Family

2-2

2

MSP430 Family Architectural Overview

2-3

2

The MSP430 devices contain the following main functions:

• Central Processing Unit (CPU)
• Program Memory (ROM or EPROM)
• Data Memory (RAM or EEPROM)
• Control of operation
• Peripheral Modules
• Oscillator + Frequency Multiplier.

The architecture of the MSP430 family is based on a memory-to-memory architecture, a
common address space for all functional blocks, and a reduced instruction set
applicable for all functional blocks.

ROM

Prom

EProm

RAM

SRAM

EEProm

CPU

incl. 16 reg.
Bus

conv.

ADC

Peripheral

Module x

WDT

Peripheral

Module y

I/O PortUSARTI/O Port

LCDTimer_AB. Timer

Peripheral

Module 1

Peripheral

Module 2

Peripheral

Module 3

Peripheral

Module n-2

Peripheral

Module n-1

Peripheral

Module n

Random

Logic

Module select

MAB, 16bit

MDB, 16bit

MAB,4bit

MDB,8bit

Oscillator

System

Clock

ACLK

MCLK

R/W
__

Figure 2.1: MSP430 system configuration

2.1 CPU

The central processing unit incorporates the following reduced, highly transparent
instruction set, and a highly orthogonal design. It consists of a sixteen bit ALU, sixteen
registers and an instruction control logic. Four of these registers are used for special
purposes, these are the Program Counter PC, Stack Pointer SP, Status Register SR
and Constant Generator CG2. All registers - except R3/CG2 and part of R2/CG1- can
be used as general-purpose registers applying the complete instruction set to registers.
The constant generator supplies constants for performing the instruction not for storing
any data. The addressing mode used on CG1 separates the data of the constants.

Architectural Overview MSP430 Family

2-4

2

The complete control over the Program Counter, the processor's Status Register and
the Stack Pointer with the reduced instruction set, allows the development of
applications with complex addressing modes or SW algorithms.

2.2 Code Memory

Access to the Code Memory is always word organized for fetching code, data can be
read with word or byte access. Any access uses the 16-bit Memory Data Bus and as
many of the least significant address lines as are needed to access the memory
locations. Blocks of memory are automatically selected via Module Enable signals, this
being a technique to reduce overall current consumption. Program memory can be
integrated as programmable (EPROM) or mask programmable (ROM) memory.
Standard members of the MSP430 family support OTP and mask programmed versions.
Support of external memory will be the subject of future enhancements.

Sixteen words of memory are reserved for reset and interrupt vectors at the top of the
lowest 64K byte address space from 0FFFFh down to 0FFE0h.

Access to Program Memory via software program is fully supported for read operation
(MOV &0FFA0h,R5), but not for write (➝ ROM).

Future enhancements:

The address space will be enhanced using segmented memory areas. The expanded
addressable space is supported mainly using three extensions: branch and call long
instructions, code segment pointer CSP and data pointer DPP. The code segment
pointer is located within the status register SR. This enhanced address space is used for
instruction codes (CSP + PC) and for data memory ([DPPi] + operand address) as
follows:

MAB = CSP * 10000h + PC during any access to code memory

MAB = DDPi * 4000h + Rs/d during any access to stack or data
memory

For basic devices using up to 64K byte addressing space, the content of CSP and DPP
is unused by the Memory Address Bus.

2.3 Data Memory (RAM)

The Data Memory is connected to the CPU via two busses: the Memory Address Bus
(MAB), and the Memory Data Bus (MDB). The Data Memory can be integrated into the
specific family member either with full (word) data width or with reduced (byte) data
width.

The entire instruction set operates fully on byte and word data. All operations on stack
and PC are word operations, and should use only even aligned addresses.

MSP430 Family Architectural Overview

2-5

2

2.4 Control of operation

The operations of the different MSP430 members are controlled mainly with the informa-
tion stored in special function registers, SFRs. The different bits in the SFRs enable
interrupts, support the software on the status of the interrupt flags and define the operat-
ing modes of the peripherals. Peripherals that are disabled stop their functional
operation to reduce current consumption. All data stored in the module's register are
retained. Peripherals that have their operating mode controlled can be identified in the
specific sections.

2.5 Peripherals

Peripheral modules are connected to the CPU via Memory Address Bus MAB, Memory
Data Bus MDB and interrupt service and request lines. The MAB is usually a 5-bit bus
for most of the peripherals. The MDB is an 8-bit or 16-bit bus. Modules with an 8-bit data
bus are connected via bus conversion circuitry to the 16-bit CPU. The data exchange
with these modules should be handled with byte instructions, without exception.
Instruction execution on word-oriented peripherals operates without any restrictions.
Most of the peripherals are operating in byte format. The SFRs are handled within an 8-
bit data range without any exception. The operation to 8-bit peripherals follows the
orders described.

MAB

^

MDB

^ |
| |
v v

Int. request <-----

Int. bus grant ------>
M o d u l e / P e r i p h e r a l

<---- Int. request

----> Int. bus grant

^
|

PUC

Figure 2.2: Bus connection of modules/peripherals

Architectural Overview MSP430 Family

2-6

2

2.6 Oscillator, Frequency Multiplier and Clock Generator

The oscillator is specially designed for the commonly-used clock crystal of 32,768 Hz
with low current consumption. All analog components are integrated; only the crystal has
to be connected.

This oscillator is the direct source for some modules with low-frequency requirements.
For the CPU and other modules, the crystal's frequency is multiplied by a first order
frequency lock loop circuitry FLL. The FLL starts after power-up with its lowest possible
frequency, and is regulated to the proper frequency by controlling a digital controlled
oscillator DCO.

The long-term deviation is limited by the stability of the crystal and oscillator.

The frequency of the clock generator for the processor's operation is a fixed multiple of
the crystal, and supports the clock MCLK.

MSP430 Family Reset, Interrupts, Operating Modes

3-1

3

3 System Reset, Interrupts and Operating Modes

Topic Page

3.1 System Reset & Initialization 3-3

3.2 Global Interrupt Structure 3-4

3.3 Interrupt Processing 3-8

3.4 Operating Modes 3-16

3.5 Low Power Modes 3-19

3.6 Basic Hints for Low Power Applications 3-21

Reset, Interrupts, Operating Modes MSP430 Family

3-2

3

MSP430 Family Reset, Interrupts, Operating Modes

3-3

3

3.1 System Reset & Initialization

The MSP430 has four possible reset sources: applying supply voltage to VCC pin, a low
input to the,, RST/NMI pin, a programmable watchdog timer time-out and a security
key violation during write access to WDTCTL register.

Resetwd2

Resetwd1

Power-up Circuitry

V

EQU *

RST/NMI

POR

WDTIFG *
WDTQn *
TIMSEL *

NMI *

PUC

...... * : Bits or signals are part of the watchdog timer peripheral module

CC

Figure 3.1: System Reset Functions

After the occurrence of a reset, the program can interrogate flags according to the reset
source. The program can determine the source of reset in order to take appropriate
action.

The MSP430 starts hardware initialization after applying VCC:

• All I/O-pins are switched to the input direction

• The I/O-flags are cleared as described in the appropriate peripheral descriptions

• The address contained in the reset vector at word address 0FFFEh is placed into the
Program Counter
The CPU starts at the address contained in the power-up clear (PUC) vector.

• The status register SR is reset.

• All registers have to be initialized by the user's program (e.g., the Stack Pointer, the
RAM,), except for PC and SR.

• Registers located in the peripherals are handled as described in the appropriate
section.

• The frequency controlled system clock starts with the lowest frequency of the digital
controlled oscillator. After the start of the crystal clock, the frequency is regulated to
the target value.
The,, RST/NMI pin is configured with the reset function after applying VCC. It
remains reset as long as the reset function is selected. When the pin is configured
with the reset function, the MSP430 starts operation after the,, RST/NMI pin is
pulled down to Gnd and released as follows:

Reset, Interrupts, Operating Modes MSP430 Family

3-4

3

• The address contained in the reset vector at word address 0FFFEh is placed into the
Program Counter

• The CPU starts at the address contained in the reset vector after the release of
the,, RST/NMI pin.

• The status register SR is reset.

• All registers have to be initialized by the user's program (e.g., the Stack Pointer, the
RAM,), except for PC and SR.

• Registers located in the peripherals are handled as described in the appropriate
section.

• The frequency controlled system clock starts with the lowest frequency of the DCO.
After the start of the crystal clock the frequency is regulated to the target value.

3.2 Global Interrupt Structure

There are three types of interrupts:
• System reset
• Non-maskable interrupts
• Maskable interrupts

Sources causing a system reset are:
• Applying supply voltage @ POR, PUC
• 'low' on,, RST/NMI (if reset mode selected) @ POR, PUC
• Watchdog timer overflow (if watchdog mode selected) @ PUC
• Watchdog timer security key violation @ PUC
• (writing to WDTCTL with incorrect password)

A non-maskable interrupt can be generated by:
• Edge on,, RST/NMI-pin (if NMI mode selected)
• Oscillator fault

Note: Oscillator fault

The oscillator fault is maskable by an individual enable bit OFIE. It is not disabled
during a general interrupt enable (GIE) reset.

Sources for maskable interrupts are:
• Watchdog timer overflow (if timer mode is selected)
• other modules having interrupt capability

MSP430 Family Reset, Interrupts, Operating Modes

3-5

3

MSP430 Interrupt Priority Scheme
The interrupt priority of the modules is defined by the arrangement of the modules in the
connection chain: the nearer a module in the chain is towards the CPU/NMIRS, the
higher is the priority.

1 2

high lowPriority

Bus grant

MAB - 5 LSB's

GMIRS

NMIRS 2

Module

1

Module

2

Module

m

Module

n
CPU

1

PUC

PUC

Circuit

Oscfault

Reset/NMI

WD

Timer

Security Key

GIE

121 21

Figure 3.2: Interrupt Priority Scheme

Reset, Interrupts, Operating Modes MSP430 Family

3-6

3

System Reset Gen.

Vcc

IE1.1

NMITMSEL

OSCFault

RST/NMI

NMIRS

PUC

IFG1.1

POR

OFIFGS

PUC

IRQA: Interrupt request accepted

IRQA

Clear

OFIE

NMIFGS

PUC IRQA

ClearIFG1.4

Watchdog Timer Module

WDTQn

IE1.0

PUC

Clear

WDTIE

IFG1.0

POR
IRQA

Clear

WDTIFG
IRQ

TIMSEL

S

Counter

EQU PUC PORNMIES

Figure 3.3: Reset/NMI-mode selection

Reset and NMI can be used only as alternatives, because they make use of the same
input pin. The associated control bits are located in the Watchdog Timer Control
register, and are also password protected.

WDTCTL

rw-0 rw-0 rw-0 rw-0 (w)-0 rw-0 rw-0 rw-0

0120h IS0IS1SSELCNTCLTMSEL

07

NMINMIESHOLD

BIT 5: The NMI-Bit selects the function of the,, RST/NMI-input pin. It is cleared
after

PUC.
NMI = 0: The,, RST/NMI input works as Reset input.

As long as the,, RST/NMI-pin is held 'low', the internal
PUC-signal is active (level sensitive).

MSP430 Family Reset, Interrupts, Operating Modes

3-7

3

NMI = 1: The,, RST/NMI input works as an edge-sensitive non-
maskable

interrupt input.

BIT 6: This bit selects the activating edge of the,, RST/NMI input if NMI function
is

selected. It is cleared after PUC.
NMIES = 0: A rising edge triggers a NMI-interrupt.
NMIES = 1: A falling edge triggers a NMI-interrupt.

Operation of global interrupt - Reset/NM I

If the Reset function is selected, the CPU is held in the reset state as long as
the,, RST/NMI-pin is held 'low'. After the input has changed to high, the CPU starts
program execution at the word address which is stored in word location 0FFFEh (Reset
vector).

If the NMI function is selected, an edge according to the NMIES-bit generates an
unconditional interrupt, and program execution is resumed at the address which is
stored in location 0FFFCh. The,, RST/NMI flag in the SFR (IFG1.4) is also set. It is
automatically reset during interrupt request service. The,, RST/NMI pin should never
be held permanently 'low'. When a situation happens that activates the PUC, the
consecutive reset of the bits in WDTCTL register forces the reset function
on,, RST/NMI pin. An continuous 'low' at,, RST/NMI pin results in a permanent
reset and system hold.

Note: NMI edge select

When NMI mode is selected and the NMI edge select bit is changed, an NMI can
be generated, depending on the actual level at ,, RST/NMI pin.

When the NMI edge select bit is changed before selecting the NMI mode no NMI
is generated.

Operation of global interrupt - Oscillator fault control

As described in the oscillator section, the FLL oscillator will continue to work even if the
crystal is defective, but it will then run at the lowest possible frequency. The second limit
is the highest possible frequency. Both cases are usually error conditions and must be
detectable by the CPU. Therefore the oscillator fault signal can be enabled by SFR bit
IE1.1 to generate an NMI interrupt. By testing the interrupt flag IFG1.1 in the SFR, the
CPU can determine if the interrupt was caused by an oscillator fault.

Operation of global interrupt - Power-up-clear (PUC)

Three sources or events can initiate system reset:
• Power-up logic
• ,,RST/NMI input

Reset, Interrupts, Operating Modes MSP430 Family

3-8

3

• Watchdog overflow.
Resets caused by,, RST/NMI and the watchdog can be evaluated by software
through testing the associated interrupt flag in SFR bit IFG1.0.

3.3 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and external
interrupt configurations to meet real-time interrupt-driven system requirements.
Interrupts may be initiated by the processor's operating conditions, such as watchdog
overflow, peripheral modules or external events. Each interrupt source can be disabled
individually by an interrupt enable bit or all interrupts are disabled by general interrupt
enable bit GIE in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit and the
General Interrupt Enable Bit (GIE) is set, the interrupt service routine becomes active as
follows:

•• CPU active: The currently executed instruction is completed.
CPU stopped: The low power modes are terminated.

•• The Program Counter pointing to the next instruction is pushed onto the stack.
•• The Status Register is pushed onto the stack.
•• The interrupt with the highest priority is selected if multiple interrupts occurred during

the last instruction and are pending for service.
•• The appropriate interrupt requesting flag is reset automatically on single source flags.

Multiple source flags remain set for servicing by software.
•• The general interrupt enable bit GIE is reset;

the CPUOff bit, the OscOff bit and the SCG1*) bit are cleared;
the status bits V, N, Z and C are reset.

• The content of the appropriate interrupt vector is loaded into the Program Counter:
The program continues with the interrupt handling routine at that address.

*) SCG0 is left unchanged, and FLL loop control remains in previous operating condition.

Item1
Item2

Item1
Item2

PC
SR

SP

SP

TOS

TOS

Before After

Interrupt Interrupt

The interrupt latency is six cycles, starting with the acceptance of an interrupt request,
and lasting until the start of execution of the first instruction of the appropriate interrupt
service routine.

MSP430 Family Reset, Interrupts, Operating Modes

3-9

3

The interrupt handling routine terminates with the instruction:

RETI

which performs the following actions:

•• The Status Register is popped from the stack.
The interrupted software continues with exactly the same status as before the
interrupt
including OscOff, CPUOff and GIE bits.
The GIE bit in the Status Register replaces the logical state present during interrupt
service with the pushed state from TOS. It is set in any case, because it was set prior
to accepting the interrupt.

•• The Program Counter is popped from the stack.

Item1
Item2

Item1
Item2

PC
SR

SP TOS

Before After

Return from Interrupt

PC
SRSP TOS

The return from an interrupt service routine with the RETI instruction takes five cycles.
Interrupt nesting is activated if the GIE-bit is set inside the interrupt handling routine.
The general interrupt enable bit GIE is located in the Status Register SR/R2 which is
included in the CPU as follows:

15 8 7 0

reserved for future enhancements V SCG1 SCG0 Osc
Off

CPU
Off

GIE N Z C

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Figure 3.4: Status Register SR

Apart from the GIE bit, other sources of interrupt requests can be enabled/disabled
individually or in groups. The interrupt enable flags are located together within two
addresses of the special function register SFR. The program flow conditions on interrupt
requests can be easily adjusted by extensive use of the interrupt enable masks. The
hardware serves the highest priority within the empowered interrupt source.

Reset, Interrupts, Operating Modes MSP430 Family

3-10

3

3.3.1 Interrupt Control Bits in Special Function Registers SFRs

Most of the interrupt control bits, interrupt flags and interrupt enable bits are collected in
SFRs under a few addresses. The Special Function Registers are located in the lower
address range and are implemented in byte format. SFRs should be only accessed with
byte instructions.

Address 7 0
000Fh Not yet defined or implemented yet
000Eh :
000Dh :
000Ch :
000Bh :
000Ah :
0009h :
0008h :
0007h :
0006h :
0005h Module enable 2; ME2.x
0004h Module enable 1; ME1.x
0003h Interrupt flag reg. 2; IFG2.x
0002h Interrupt flag reg. 1; IFG1.x
0001h Interrupt enable 2; IE2.x
0000h Interrupt enable 1; IE1.x

The various devices of the MSP430 Family support the SFRs with the correct logic and
function within the individual modules. Each module interrupt source, except the non-
maskable sources, can be individually enabled to access the interrupt function and the
operation. Full software control of these configuration bits allows the application software
to react to system requirements on interrupt enable mask.

MSP430 Family Reset, Interrupts, Operating Modes

3-11

3

Interrupt Enable 1 and 2

Bit position Short form Initial state* Comment
IE1.0 WDTIE reset Watchdog Timer enable

signal.
Inactive if watchdog mode
is selected.

IE1.1 OFIE reset Oscillator fault enable
IE1.2 P0IE.0 reset Dedicated I/O P0.0
IE1.3 P0IE.1 reset Dedicated I/O P0.1 or

8-bit
Timer/Counter

IE1.4 reset reserved, not defined yet
IE1.5 reset reserved, not defined yet
IE1.6 reset reserved, not defined yet
IE1.7 reset reserved, not defined yet
IE2.0 URXIE reset USART receive enable
IE2.1 UTXRIE reset USART transmit enable
IE2.2 ADIE / TPIE reset ADC or Timer/Port enable

signal (‘310 config.)

* Initial state is the logical state after PUC. For the WDTIFG see the appropriate comment.

Bit position Short form Initial state Comment
IE2.3 TPIE reset Timer/Port (‘320,’330

config.)
IE2.4 reset reserved, not defined yet
IE2.5 reset reserved, not defined yet
IE2.6 reset reserved, not defined yet
IE2.7 BTIE reset Basic Timer enable signal

Reset, Interrupts, Operating Modes MSP430 Family

3-12

3

Interrupt Flag Register 1 and 2

Bit position Short form Initial state Comment
IFG1.0 WDTIFG unchanged Set on overflow or

security key violation;
or reset Reset on VCC power-on

or
reset condition at
````, RST/NMI-pin

IFG1.1 OFIFG set Flag set on oscillator fault
IFG1.2 P0IFG.0 reset Dedicated I/O P0.0
IFG1.3 P0IFG.1 reset Dedicated I/O P0.1 or

8-bit
Timer/Counter

IFG1.4 NMIIFG reset Signal at````, RST/NMI-pin
IFG1.5 reserved, not defined yet
IFG1.6 reserved, not defined yet
IFG1.7 reserved, not defined yet
IFG2.0 URXIFG USART receive flag
IFG2.1 UTXIFG USART transmitter ready
IFG2.2 ADIFG reset ADC, set on end-of-

conversion
IFG2.3 reserved, not defined yet
IFG2.4 reserved, not defined yet
IFG2.5 reserved, not defined yet
IFG2.6 reserved, not defined yet
IFG2.7 BTIFG unchanged Basic Timer flag

Module enable 1and 2

Bit position Short form Initial state Comment
ME1.0 reserved, not defined yet
ME1.1 reserved, not defined yet
ME1.2 reserved, not defined yet
ME1.3 reserved, not defined yet
ME1.4 reserved, not defined yet
ME1.5 reserved, not defined yet
ME1.6 reserved, not defined yet
ME1.7 reserved, not defined yet
ME2.0 URXE USART receiver enable
ME2.1 UTXE USART transmit enable
ME2.2 reserved, not defined yet
ME2.3 reserved, not defined yet
ME2.4 reserved, not defined yet
ME2.5 reserved, not defined yet
ME2.6 reserved, not defined yet
ME2.7 reserved, not defined yet



MSP430 Family Reset, Interrupts, Operating Modes

3-13

3

Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the ROM, using
address range 0FFFFh - 0FFE0h. The vector contains the 16-bit address of the
appropriate interrupt handler instruction sequence. The interrupt vectors are shown in
decreasing priority order of priority:

Interrupt source Interrupt flag System Interrupt Word Address Priority

Power-up
ext. Reset
Watchdog

Reset 0FFFEh 15,
highest

NMI
OSC. fault

NMIIFG
OFIFG *

non-maskable
(non-)maskable

0FFFCh 14

Dedicated I/O P0IFG.0

Dedicated I/O

Watchdog timer

Timer_A

Timer_A

ADC, Timer/Port

Basic Timer

Port P0 P0IFG.27 *, **

BTIFG

WDTIFG

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

maskable

0FFFAh

0FFF8h

0FFF6h

0FFF4h

0FFF2h

0FFF0h

0FFEEh

0FFECh

0FFEAh

0FFE8h

0FFE6h

0FFE4h

0FFE2h

0FFE0h

13

12

11

10

9

8

7

6

5

4

3

2

1

0,
lowest

P0IFG.1

USART Receive

Timer/Port

ADCIFG

WDTIFG

1)

2)

CCIFG0

TAIFG **

URXIFG

USART Transmit UTXIFG

Port P2

Port P1

P2IFG.07 *, **

P1IFG.07 *, **

*)  multiple source flags
**) Preliminary definition
1)  Timer/Port vector in ‘320 and ‘330 configuration
2)  Timer/Port vector in ‘310 configuration

Table 3.1: Interrupt sources, flags and vectors



Reset, Interrupts, Operating Modes MSP430 Family

3-14

3

3.3.2 External Interrupts

All eight bits of the entire ports P0, P1 and P2 are implemented for interrupt processing
of external events. All individual  I/O bits are programmable independently.

Any combinations of inputs, outputs and interrupt conditions are possible. This allows an
easy adaptation to different I/O configurations.

Note: Minimum pulse width of external interrupt signals

All external interrupt signals should have a minimum pulse width of 1.5 MCLK to
ensure stable interrupt acknowledgement, but shorter signals may also request an
interrupt service

Port P0
Three separate vectors are allocated to the port P0 module. The signals on P0.0, P0.1
and the remaining port signals P0.2 to P0.7 are used as the three interrupt vector
sources. The vector contained in the corresponding memory location is loaded into the
Program Counter by an interrupt even.

The port P0 has 6 registers used for the control of the I/O-pins
• Input Register
• Output Register
• Direction Register
• Interrupt Flags: This register contains six flags, which contain information

if the I/O-pins are used as interrupt inputs:
Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending, due to a transition at the

I/O-pin.
Writing a zero to an Interrupt Flag resets it.
Writing a one to an Interrupt Flag sets it. Device operation
continues just the same way as if an interrupt event had 
occurred.

• Interrupt Edge Select: This register contains a bit for each I/O-pin that selects 
which transition triggers the interrupt flag.
Bit = 0: The interrupt flag is set with LO/HI transition
Bit = 1: The interrupt flag is set with HI/LO transition

• Interrupt Enable: This register contains six bits for the I/O-pins P0.2 to
P0.7, to enable interrupt request on an interrupt event.
Bit = 0: The interrupt request is disabled
Bit = 1: The interrupt request is enabled



MSP430 Family Reset, Interrupts, Operating Modes

3-15

3

I/O-PIN interrupt handler for P0.2 to P0.7: Programming Example

; The I/O-PIN interrupt handler for P0.2 to P0.7starts here
;
IOINTR PUSH R5 ; Save R5

MOV.B &P0IFG,R5 ; Read interrupt flags
BIC.B R5,&P0IFG ; Clear status flags with the read

; data
; Additional set bits are not cleared!

EINT ; Allow interrupt nesting
;
; R5 contains information which I/O-pin(s) caused interrupt:
; the processing starts here.
;

.........

.........
POP  R5 ; JOB done: restore R5
RETI ; Return from interrupt
.........
.........

; Definition of interrupt vector table
.sect "IO27_vec",0FFE0h
.WORD IOINTR ; I/O-Pin (2 To 7) Vector In ROM
;
.sect "RST_vec",0FFFEh ; Interrupt Vectors
.WORD RESET

Port P1, Port P2
The ports P1 and P2 are identical. A separate vector is allocated to the port P1 and port
P2 module. The pins P1.0 to P0.7 and P2.0 to P2.7 are used as the interrupt sources.
The vector contained in the corresponding memory location is loaded into the Program
Counter by an interrupt event.

Each port P1 and P2 has 7 registers used for the control of the I/O-pins
• Input Register
• Output Register
• Direction Register
• Interrupt Flags: This register contains eight flags that contain information if

the I/O-pins are used as interrupt inputs:
Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending due to a transition at the 

I/O-pin.
Writing a zero to an Interrupt Flag resets it.
Writing a one to an Interrupt Flag sets it. Device operation
continues just the same way as if an interrupt event had 
occurred.



Reset, Interrupts, Operating Modes MSP430 Family

3-16

3

• Interrupt Edge Select: This register contains a bit for each I/O-pin that selects 
which transition triggers the interrupt flag.
Bit = 0: The interrupt flag is set with LO/HI transition
Bit = 1: The interrupt flag is set with HI/LO transition

• Interrupt Enable: This register contains eight bits for the I/O-pins P0.2 to
P0.7 to enable interrupt request on an interrupt event.
Bit = 0: The interrupt request is disabled
Bit = 1: The interrupt request is enabled

• Function Select Register.

Note: How the interrupts on digital ports P0, P1 and P2 are handled

Only transitions (not static levels) cause interrupts.

The interrupt routine must reset the multiple used Interrupt Flags. Multiple
interrupt flags are P0IFG.2 to P0IFG.7, P1IFG.0 to P0IFG.7 and P2IFG.0 to
P0IFG.7. The single source flags P0IFG.0 and P0IFG.1 are reset when they are
serviced.

If an Interrupt Flag is still set (because the transition occurred during the interrupt
routine) when the RETI instruction is executed, an interrupt occurs again after the
RETI is completed. This ensures that each transition is seen by the software.

3.4 Operating Modes

The MSP430 operating modes support various requirements for ultra-low power and
ultra-low energy consumption in an advanced manner. This is combined with an
intelligent management of operations during the different module and CPU states. An
interrupt event awakes the system from each of the various operating modes and the
RETI instruction returns operation to the mode that was selected before the interrupt
event.

The MSP430 Family has been developed for ultra-low power applications and uses
different levels of operating modes.

Ultra-low power system design in CMOS technology takes account of three primary
intentions:
• the desire for speed and data throughput conflicts with a design for ultra-low power
• minimize individual current consumption
• limit activity state to the minimum required.



MSP430 Family Reset, Interrupts, Operating Modes

3-17

3

RST/NMI
___

reset active

RST/NMI
___

NMI active

WDT is active

RST/NMI is reset pin
___

Vcc on

POR

PUC

Security key violation
WDT active,

Time expired, overflow
WDT active,

LP-Mode LPM3

CPU off, FLL off
MCLK off, ACLK on

LP-Mode LPM4

CPU off, FLL off
MCLK off, ACLK off

DC Generator off

LP-Mode LPM2

CPU off, FLL off
MCLK off, ACLK on

LP-Mode LPM1

CPU off, FLL off
MCLK on, ACLK on

CPU off, FLL on
MCLK on, ACLK on

Active Mode

CPU is active
Various modules are active

LP-Mode LPM0

CPUOff=1

CPUOff=1
SCG0=1

CPUOff=1
SCG1=1

CPUOff=1
SCG0,1=1

CPUOff=1
OscOff=1

FLL is slowed down

WDTIFG=0

WDTIFG=1

WDTIFG=1

DC Generator off

There are five operating modes which  the software can configure:

• Active Mode AM,
with different combinations of active peripheral modules

• Low Power Mode 0 LPM0,
with CPUOff bit set, the CPU is disabled,
peripheral's operation is not halted by CPUOff,
ACLK and MCLK signal are active. Loop control for MCLK is active.
@ SCG1=0, SCG0=0, OSCOff=0, CPUOff=1

• Low Power Mode 1 LPM1,
with CPUOff bit set, the CPU is disabled,
peripheral's operation is not halted by CPUOff,
loop control (frequency-lock-loop) for MCLK is inactive,
ACLK and MCLK signal are active.
@ SCG1=0, SCG0=1, OSCOff=0, CPUOff=1

• Low Power Mode 2 LPM2,
with CPUOff bit set, the CPU is disabled,
peripheral's operation is not halted by CPUOff,



Reset, Interrupts, Operating Modes MSP430 Family

3-18

3

loop control for MCLK signal is inactive,
ACLK signal is active.
@ SCG1=1, SCG0=0, OSCOff=0, CPUOff=1

• Low Power Mode 3 LPM3,
with CPUOff bit set, the CPU is disabled,
peripheral's operation is not halted by CPUOff,
Loop control for MCLK and MCLK signal are inactive,
DC generator of the DCO (-> MCLK generator) is switched off.
ACLK signal is active.
@ SCG1=1, SCG0=1, OSCOff=0, CPUOff=1

• Low Power Mode 4 LPM4,
with CPUOff bit set, the CPU is disabled,
peripheral's operation is not halted by CPUOff,
loop control for MCLK signal is inactive,
DC generator of the DCO (-> MCLK generator) is switched off,
ACLK signal is inactive; the crystal oscillator is stopped.
@ SCG1=X, SCG0=X, OSCOff=1, CPUOff=1

Typical current consumption vs. Operating Modes

Operating Modes

ICC/uA

0

100

200

300

400

500

600

700

AM LPM0 LPM1 LPM2 LPM3 LPM4

730

100 100

13 4 0.1

400

50 50 6 1.3 0.1

VCC=5V
VCC=3V

Source: TI Data sheet SLASE07, January 1996 (MSP430C312/314)

The activity state of individual peripheral modules and the CPU can be controlled using
the appropriate low power mode, and various options to stop operation of parts of
peripheral modules, or to stop them completely. There are different ways to configurethe
lowest potential current consumption, using the software on an application-specific
basis. The special function registers include module enable bits that stop or enable the
operational function of the specific peripheral module. All registers of the peripherals
may be accessed even during disable mode. Other current saving functions can be
implemented into peripherals that are accessed via the state of the register bits. An
example is the enables/disable of the analog voltage generator in the LCD peripheral:
this is turned on or off via one register bit. The most general bits that influence the



MSP430 Family Reset, Interrupts, Operating Modes

3-19

3

current consumption and support fast turn-on from low power operating modes are
located in the status register SR. There are four bits that control the CPU and the
system clock generator.

These four bits are very useful to support the request for discontinuous active mode AM,
and to limit the time period of the full operating mode. The four bits are CPUOff, OscOff,
SCG0 and SCG1. The major advantage of including the operating mode bits into the
status register is that the present state of the operating condition is saved onto stack
during an interrupt request service. As long as the stored status register information is
not altered, the processor continues (after RETI) with the same operating mode as
before the interrupt event. Another program flow may be selected by manipulation of the
data stored on the stack or the stack pointer. The easy access of the stack and stack
pointer with the instruction set allows individually optimized program structures.

3.5 Low Power Modes

The module enable bits in the SFRs enable the configuration of individual power
consuming controller operation states. The users program defines the state of the
peripheral modules to be active or inactive. The current consumption of disabled
modules is decreased by the leakage current of all parts that can be disabled. The only
active parts of a module are those which are mandatory to get it to the enable state or to
pass interrupt requests to the CPU (e.g. external hardware interrupt).

In addition to the individual enable options, there are  five more current saving modes
possible: the CPU off mode (LPM0), and four operating configurations of the system
clock generator. They are entered if one or more of the bits CPUOff, SCG1, SCG0,
OscOff - located in the Status Register - are set. The reaction of the system clock
generator module on the status of the bits SCG1, SCG0 and OscOff with its four low
power modes are described in detail in the system clock generation section.

Enter interrupt routine
The interrupt routine is entered and processed if an enabled interrupt wakes-up the
MSP430:
- The SR and PC are stored onto the stack, with the content present at the interrupt

event.
- Subsequently the operation mode control bits OscOff, SCG1 and CPUOff are cleared

automatically in the Status Register.

Return from interrupt
Two different ways back from interrupt service routine to continue flow of operation are
practicable:

- Return with set low power mode bits
When returning from the interrupt, the program counter points to the next instruction.
The instruction pointed to is not executed, since the restored low power mode stops
CPU activity.

- Return with reset low power mode bits
When returning from the interrupt, the program continues at the address following the
instruction which set the OscOff or CPUOff-bit in the Status Register.



Reset, Interrupts, Operating Modes MSP430 Family

3-20

3

3.5.1 Low Power Mode 0 and 1, LPM0 and LPM1

Low power mode 0 or mode 1 is selected if the appropriate bit CPUOff in the status
register is set. Immediately after the bit is set the CPU stops operation, and the normal
operation of the system core  is stopped. The operation of the CPU is halted until any
interrupt request or reset is effective. All internal bus activities are stopped. The system
clock generator continues operation, and the clock signals MCLK and ACLK are active
depending on the state of the other three bits, SCG0, SCG1 and OscOff in the status
register. The SCG1 bit defines if the MCLK is controlled to be N*ACLK, or to run with the
latest DCO control signals.

Those peripherals are active which are enabled and clocked with the MCLK or ACLK
signal. All pins of I/O ports and the RAM/registers are unchanged. Wake-up is possible
by all enabled interrupts.

; === Main program flow with switch to CPUOff Mode =========================
;

BIS #18h,SR ; Enter LPM0 + enable general interrupt GIE.
; The PC is incremented during execution of this in-
; struction and points to the consecutive program step.

.......... ; The program continues here if CPUOff bit is reset
; during the interrupt service routine

; === Interrupt service routine ===========================================
..........
..........
RETI ; RETI restores the same state of CPU before
interrupt.

; This is possible because control registers GIE,
; CPUOff, OscOff, SGC1 and SCG0 are located in the
; status register which is restored during execution of
; return-from-interrupt.

3.5.2 Low Power Mode 2 and 3, LPM2 and LPM3

Low power mode 2 or mode 3 is selected if the appropriate bit CPUOff and SCG1 bit in
the status register are set. Immediately after the bits are set, the CPU and MCLK are
halted. The CPU and MCLK are halted until any interrupt request or reset is effective. All
internal bus activities are stopped. The SCG1 bit defines if the MCLK is controlled to be
N*ACLK or to run with the latest DCO control signals when the sytem returns to active
mode.

Those peripherals are active that are enabled and clocked with the ACLK signal.
Peripherals that are operating with the MCLK signal are inactive, because the MCLK
signal is inactive. All pins of I/O ports and the RAM/registers are unchanged. Wake-up is
possible by those enabled interrupts coming from system clock (MCLK) independent
sources.



MSP430 Family Reset, Interrupts, Operating Modes

3-21

3

3.5.3 Low Power Mode 4, LPM4

All activities cease; only the RAM contents, Port and registers are maintained. Wake-up
is only possible by enabled external interrupts.

Before activating LPM4, the software flow should consider the conditions that are
applied to the system during the period of this low power mode. The two and most
important figures that should be looked at are the environmental situation, with the
influence at the DCO and the clocked operation conditions. The environmental situation
defines whether the actual value of the frequency integrator should be held or corrected.
A correction can be intended when ambient conditions would increase the system
frequency drastically. When clocked operation is applied, it should be considered that
the loop can lose control over the frequency if there remaining time slot is insufficient to
hold the closed loop in the correct operating range.

The following example shows the entering of the low power mode 4 (OscOff):

BIS #B8h,SR ; Enter LPM4 + enable general interrupt GIE.
; The CPU must be switched of with LPMs.
; Additionally the DCO operation is enabled.
; When during the interrupt routine the LPM4 is going
; to be disrupted, DCO operation is prepared.

.......... ; The program continues here if OscOff bit is reset

.......... ; during the interrupt service routine.

.......... ; Otherwise it retains in OscOff mode

3.6 Basic Hints for Low Power Applications

There are some general basics principles which should be considered when the current
consumption is a critical part of a system application:

• Tie unused FETI input to VSS
• Switch-off the Analog Generator in the LCD+ module or an external one if convenient
• Do not tie the JTAG inputs TMS, TCK and TDI to VSS
• Any CMOS input should have no floating node: tie all inputs to an appropriate voltage

level

• Select the lowest possible operating frequency - for the core and for the individual
peripheral module

• Select the weakest drive capability if an LCD is used, or switch it off

• Utilize the feature of interrupt driven software - the program starts execution rapidly.



Reset, Interrupts, Operating Modes MSP430 Family

3-22

3



MSP430 Family Memory Organization

4-1

4

4 Memory Organization

Topic Page

4.1 Data in the Memory 4-5

4.2 Internal ROM Organization 4-6

4.3 RAM and Peripheral Organization 4-7



Memory Organization MSP430 Family

4-2

4



MSP430 Family Memory Organization

4-3

4

The MSP430 family's memory space is configured in a "von-Neumann Architecture" and
has code memory (ROM, EPROM, RAM) and data memory (RAM, EEPROM, ROM) in
one address space using a unique address and data bus.

All the physically separated memory areas, the internal areas for ROM, RAM, SFRs and
peripheral modules, and the external memory, are mapped into the common address
space. The total addressable memory space provided is 64KB in the small memory
model and 1MB in the large memory model. The small memory model uses a linear
address space, while in the large memory model the address space is arranged in
sixteen segments of 64KB at code access, and 16 pages of 64KB at data access.

Address

FFFFFh

SegmentPage
Data Code
Large Memory Model

00000h

0FFFFh

10000

Max. Total
Address Space

Small Memory Model

15

14

0

1

NA

Data
&

Code

Page

15

14

0

1

Figure 4.1: Total Memory Address Space

Devices with a memory configuration of 64KB or less use the small memory model with
basic address range of the lowest 64KB, and do not care about code segments and data
pages.



Memory Organization MSP430 Family

4-4

4

The configuration according to the small memory model and data bus width is shown
below:

Address Function Access
(hex.) 7                                          0

0FFFFh

0FFE0h
Interrupt vector table ROM Word/

Byte
0FFDFh Program Memory

Branch control tables
Data tables......

ROM Word/
Byte

0200h Data Memory
RAM Word / Byte

01FFh
:

0100h
16-bit Peripheral Modules

Timer,
ADC, ...... Word

0FFh

010h
8-bit Peripheral Modules

I/O, LCD,
8bT/C, ....... Byte

0Fh

0h
Special Function Registers SFR Byte

Figure 4.2: Memory Map of Basic Address Space

The Data Bus is 16-bit or 8-bit wide. For those modules that can be accessed with word
data, the width is always 16 bits, and for the other modules 8 bits; they should only be
accessed with byte instructions. The Program Memory (ROM) and the Data Memory
(RAM) can be accessed with byte or word instructions. Parts of peripheral modules are
realized as 16-bit wide or 8-bit wide modules. The access should use the proper
instructions, either byte or word.

Many peripheral modules are connected to the CPU with an 8-bit Memory Data Bus
(MDB), with the 5 least significant bits of the Memory Address Bus (MAB) plus two
Module Enable signals (ME), two interrupt control/request lines, and a power-up signal.



MSP430 Family Memory Organization

4-5

4

The access to these modules should be always performed using byte instruction
formats. Other 16-bit peripheral modules are connected to the 16-bit MDB with full
supporting word processing, and should use word instruction format for any access.

LCD SPI

SFRs SCI

Low Byte

Data Bus

CPUROM RAM

WDT

Address range 0000h - 00FFh

8-bit Peripheral Modules, 16-bit Peripheral Modules,

ADC

byte/word
access

High Byte

byte access word access

4.1 Data in the Memory

Bytes are located at even or odd addresses. Words are located in the ascending
memory locations aligned to even addresses: the low byte is at the even address,
followed by the high byte at the next odd address.

Byte

Byte

Word (High Byte)

Word (Low Byte)

. . Bits . .7

15

6 1 0

8914 . . Bits . .

xxx4h

xxx5h

xxx6h

xxx7h

xxx8h

xxx9h

xxxAh

xxx3h. . . .

. . . .

Figure 4.3: Bit, Byte and Word in a byte organized Memory



Memory Organization MSP430 Family

4-6

4

4.2 Internal ROM Organization

Various sizes of ROM up to 64K bytes are possible. The common address space is
shared with special function registers, peripheral module registers, data and code
memory. The special function registers and peripheral modules are mapped into the
address range, starting with 0 and up to 01FFh. The remaining address space 0200h to
0FFFFh is shared by data and code memory.

The start address for all different sizes of ROM is at the same address 0FFFEh. The
interrupt vector table also starts with highest priority at this highest ROM word address.
The program counter, and hence the flow of instructions, is in the opposite direction -
from lower addresses towards higher addresses. The program counter is increased by
two, four or six according to the address mode used - program flow control instruction
Jumps, branches and calls excluded.

15 0
0FFFFh <- Program Counter
:
:

4 K 12 K 64 K

0F000h

0EFFFh
:
:
0D000h

0CFFFh

:

:

00200h

Figure 4.4: ROM Organization

The interrupt vectors and the power-up vector are located in the ROM, starting at
address 0FFFEh. The vectors contain the 16-bit addresses of the appropriate interrupt
handler instruction sequence.

4.2.1 Processing of ROM Tables

The MSP430 architecture allows the storage of large tables in the ROM. To access
these tables, all word and byte instructions can be used. This offers various advantages
with regard to flexible and ROM saving programming:

• Storage of an Output-PLA for display character conversion inside the ROM
• As many OPLA-terms as needed (no restriction on n terms)



MSP430 Family Memory Organization

4-7

4

•• OTP version automatically includes OPLA programmability
•• Computed table accesses (e.g. for a bar graph display)
•• Table supported program flows.

The processing of tables is a very important feature, which allows very fast and clear
programming. Especially for sensor applications, it is advantageous to have the sensor
data in tables e.g. for linearization, compensation etc.

4.2.2 Computed Branches and Calls

Computed branches and subroutine calls are possible using standard instructions. The
CALL and BR instructions use the same addressing modes as the other instructions
(see programming examples).

The addressing modes allow indirect-indirect addressing, ideally suited for computed
branches and calls. The full use of this programming technique permits a program
structure different to conventional 8- and 16-bit controllers. A lot of routines can be
handled easily using software status handling, instead of 'Flag' type program flow
control.

The computed branches and subroutine calls are valid within a 64KB code segment.

4.3 RAM and Peripheral Organization

The entire RAM can be accessed in byte or word data, using the appropriate instruction
suffix. The peripheral modules are located in two different address spaces:

• the special function registers are byte oriented by hardware and mapped into the
address space from 0h up to 0Fh

• the peripheral modules that are byte oriented by hardware are mapped into the
address space from 010h up to 0FFh

• and peripheral modules that are word oriented by hardware are mapped into the
address space from 100h up to 01FFh

4.3.1 RAM

The RAM can be used for both code and data memory. Code accesses are always
made on even byte addresses.

The suffix at the instruction memonic defines the access of the data as being word or
byte data.

Example:
ADD.B &TCDATA,TCSUM_L ;Byte acess
ADDC.B TCSUM_H  Byte acess
ADD R5,SUM_A ≡ ADD.W R5,SUM_A; ;Word acess
ADDC SUM_B ≡ ADDC.W SUM_A ;Word acess

A Word consists of two bytes, a Highbyte (bit 15 to bit 8) and a Lowbyte (bit 7 to bit 0)
and should always be aligned to even addresses.



Memory Organization MSP430 Family

4-8

4

Byte1: 012h

Byte2: 034h

Word2(High Byte):09Ah

Word2(Low Byte):0BCh xxx4h

xxx5h

xxx6h

xxx7h

xxx8h

xxx3h. . . .

. . . .

ADD.B   Byte1,Byte2::

Word1(High Byte):056h

Word1(Low Byte):078h ADD.W  Word1,Word2::

Byte2= 012h+034h=046h

Word2=05678h+09ABCh=0F134h

xxx9h

xxxAh

Figure 4.5: Byte and Word Operation

All operations on Stack and PC are word operations, and use even aligned memory
addresses.

Word-to-word and byte-to-byte operations are performed completely correctly, both the
results of the operation and the status bit information.

Word-word operation: Byte-byte operation

R5 = 0F28Eh R5 = 0223h
EDE  .EQU   0212h EDE  .EQU   0202h
Mem(0F28Eh) = 0FFFEh Mem(0223h) = 05Fh
Mem(0212h) = 00112h Mem(0202h) = 043h

ADD @R5,&EDE ADD.B @R5,&EDE

Mem(0212h) = 00110h Mem(0202h) = 0A2h
C = 1, Z = 0, N = 0 C = 0, Z = 0, N = 1

Register-Byte operation: Byte-Register operation:

High Byte Low Byte High Byte Low Byte

unused Register Byte Memory

Byte Memory 0h Register



MSP430 Family Memory Organization

4-9

4

Example Register-Byte operation Example Byte-Register operation
R5 = 0A28Fh R5 = 01202h
R6 = 0203h R6 = 0223h
Mem(0203h)    = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh    05Fh
+ 012h + 002h ;Lowbyte of R5
 0A1h 061h ;-> store into R5 -

Highbyte is 0
Mem(0203h)    = 0A1h R5 = 061h
C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

   (Lowbyte of register)    (addressed byte)
+ (addressed byte) + (Lowbyte of register)
->(addressed byte) ->(Lowbyte of register, zero to

   Highbyte)

Note: Word-Byte operation

Word-Byte or Byte-Word operations on memory data are  n o t  supported.
Each register-byte and byte-register operation is performed as a byte operation.

4.3.2 Peripheral Modules - Address Allocation

All peripheral modules are accessed and controlled by the software. All instructions are
approved for the data interchange operation. Since there are modules physically using
the MDB with its word construction, and modules that use only the eight least significant
bits, the address space from 0100 to 01FFh is reserved for word modules and the
address space from 00h to 0FFh is reserved for byte modules.

Peripheral modules mapped into the word address space should be accessed with word
instructions (e.g. MOV R5,&WDTCTL). Peripheral modules mapped into the word
address space should be accessed with byte instructions (MOV.B #1,&TCCTL).

The addressing of both is made via the absolute addressing mode, or via the 16-bit
working registers, using the indexed, indirect or indirect autoincrement addressing
mode.



Memory Organization MSP430 Family

4-10

4

Address Function Access
(hex.) 7                     0

01FFh
:

0100h
16-bit Peripheral Modules

Timer,
ADC, ...... Word

0FFh

010h
8-bit Peripheral Modules

I/O, LCD, 8b T/C,
....... Byte

0Fh

0h
Special Function Registers SFR Byte

Figure 4.6: Example of RAM/peripheral organization

Word modules

Word modules are peripherals that are connected to the complete 16-bit MDB.

Access to word modules is always in word format, and byte access is not supported
since the hardware is constructed for word operation only.

The peripheral file address space is organized in sixteen frames, and each frame
represents eight words.

Address
Description

1F0h - 1FFh reserved
1E0h - 1EFh reserved
1D0h - 1DFh reserved
1C0h - 1CFh reserved
1B0h - 1BFh reserved
1A0h - 1aFh reserved
190h - 19Fh reserved
180h - 18Fh reserved
170h - 17Fh Timer_A
160h - 16Fh Timer_A
150h - 15Fh reserved
140h - 14Fh reserved
130h - 13Fh Multiplier
120h - 12Fh Watchdog Timer
110h - 11Fh Analog-to-Digital Converter
100h - 10Fh reserved

Figure 4.7: Peripheral File Address Map - Word Modules



MSP430 Family Memory Organization

4-11

4

Byte modules

Byte modules are peripherals that are connected to the reduced (eight LSB) MDB. The
access to byte modules is always a byte access. The hardware in the peripheral byte
modules takes the LowByte - the least significant bits - along with a write operation.

Byte instructions operate on byte modules without any restriction. Read access to the
data of a peripheral byte module with word instructions results in unpredictable data on
the Highbyte. Word data are written into a byte module by writing the LowByte to the
appropriate peripheral register, and ignoring the HighByte.

The peripheral file address space is organized in sixteen frames.

Address
Description

00F0h - 00FFh reserved
00E0h - 00EFh reserved
00D0h - 00DFh reserved
00C0h - 00CFh reserved
00B0h - 00BFh reserved
00A0h - 00AFh reserved
0090h - 009Fh reserved
0080h - 008Fh reserved
0070h - 007Fh USART registers
0060h - 006Fh reserved
0050h - 005Fh System Clock Generator registers
0040h - 004Fh Basic Timer, 8-bit Timer/Counter, Timer/Port registers
0030h - 003Fh LCD registers
0020h - 002Fh Digital I/O Port P3 and P4 control registers
0010h - 001Fh Digital I/O Port P0, P1 and P2 control registers
0000h - 000Fh Special Function Registers

Figure 4.8: Peripheral File Address Map - Byte Modules

4.3.3 Peripheral Modules - Special Function Registers SFRs

The system configuration and the individual reaction of the peripheral modules to
processor operation modes are mainly defined in Special Function Registers. The
Special Function Registers are located in the lower address range, and are realized in
byte  manner. SFRs should be only accessed with byte instructions. Even if specific SFR
bits share the same address space, they can be implemented physically within the
associated module.



Memory Organization MSP430 Family

4-12

4

Address Data Bus
7                                                            0

000Fh Not defined / implemented yet
000Eh           :
000Dh           :
000Ch           :
000Bh           :
000Ah           :
0009h           :
0008h           :
0007h           :
0006h           :
0005h Module enable 2; ME2.2
0004h Module enable 1; ME1.1
0003h Interrupt flag reg. 2; IFG2.x
0002h Interrupt flag reg. 1; IFG1.x
0001h Interrupt enable 2; IE2.x
0000h Interrupt enable 1; IE1.x

Figure 4.9: Special Function Register Address Map

The different devices of the MSP430 Family support SFRs with the correct logic and
function within the individual modules. Each module can be enabled individually, to
access the interrupt function and the operation. Full software control of these
configuration bits enables the application software to react to system requirements on
interrupt enable mask.

The power consumption of the system is influenced by the number of the enabled
modules, and their function. Disabling a module from the actual operation mode reduces
power consumption while other parts of the controller remain fully active. Two parts can
not be disabled: ROM and RAM. The processor core can be switched to disabled mode
- CPUOff Mode - with all internal functions disabled: CPU and bus activities are stopped.



MSP430 Family CPU, 16bit

5-1

5

5 CPU, 16bit

Topic Page

5.1 CPU Registers 5-3

5.2 Addressing modes 5-9

5.3 Instruction set overview 5-19

5.4 Instruction map 5-25



CPU, 16bit MSP430 Family

5-2

5



MSP430 Family CPU, 16bit

5-3

5

The equal width of the PC register, and also of the working registers, allows new
features: for example, seven addressing modes.
The "von-Neumann-Architecture" used in the MSP430 has RAM and ROM in one
adress space, using a single address and data bus.

5.1 CPU Registers

Fourteen 16-bit registers (R0, R1, R4 to R15) are used for data and addresses. These
registers are implemented in the CPU. They are able to address up to 64KBytes (ROM,
RAM, EERAM, Peripherals,...) without any segmentation. The complete CPU register
set is shown below. The registers which are used for special purposes are marked. The
registers R0, R1, R2 and R3 are restricted in their common use due to their special
functions, described later.

Program Counter PC

Stack Pointer SP

Status Register SR

Constant Generator CG1

Constant Generator CG2

Working Register R4

Working Register R5

Working Register R13

Working Register R14

Working Register R15

:

:

R0

R1

R2

R3

R4

R5

:

:

R13

R14

R15

Table 5.1: Register by functions

5.1.1 The Program Counter PC

The 16-bit Program Counter PC defines which instruction will be executed next. Each
instruction uses an even number of bytes: two, four or six bytes. The instruction
accesses are performed on word boundaries, and so the program counter is aligned to
even addresses. The PC is double-incremented during the fetch cycle of an instruction:
it points to the word following the currently executed instruction. This makes two
additional addressing modes possible (Immediate Mode and Symbolic Mode), which use
the word following the instruction for information.



CPU, 16bit MSP430 Family

5-4

5

15 1 0

Program counter bits 15 to 1 0

Figure 5.1: Program Counter PC

5.1.2 The System Stack Pointer SP

The system Stack Pointer SP should always be aligned to even addresses, since the
stack is accessed with word data during interrupt request service. The system Stack
Pointer SP is used by the CPU for the storage of the return addresses of subroutine
calls and interrupts. It uses a pre-decrement, post-increment scheme. This scheme has
the advantage that the item on the top of the stack (TOS) is available. The SP may be
used by the user's software (PUSH and POP instructions), but it should be remembered
that the CPU uses the Stack Pointer too.

15 1 0

System Stack Pointer bits 15 to 1 0

Figure 5.2: System Stack Pointer SP

Note: Software stack pointer using general purpose registers

The general purpose registers R4 to R15 can be used as SW-stackpointers.

Pushing item onto a word SW-stack  controlled by Rn:

DECD Rn ; Double-decrement SW-SP Rn
MOV item,0(Rn) ; PUSH item on SW-stack

Popping item off a SW-stack is made by:

MOV @Rn+,item ; POP ITEM off SW-stack

Pushing item onto a byte SW-stack  controlled by Rm:

DEC Rm ; Decrement SW-SP Rm
MOV.B item,0(Rn) ; PUSH item on SW-stack

Popping item off a byte SW-stack is made by:

MOV.B @Rn+,item ; POP ITEM off SW-stack



MSP430 Family CPU, 16bit

5-5

5

Special  condition on PUSH and POP of the System Stack Pointer.

PUSH SP POP SP

SP SPSP1 1 1SP2
SPold

The Stack Pointer is not The Stack Pointer SP is
changed after PUSH SP loaded with the data of
instruction the memory pointed to by

SP before executing POP SP
instruction

After the sequence

PUSH SP ; SP1 is stack pointer after 1. inst.
        |
        |
POP   SP ; SP2 is stack pointer after 2. inst.

the Stack Pointer is two bytes lower than before this sequence.

Examples for System Stack Pointer addressing (refer to figure Stack Usage) :

MOV SP,R4 ; #0xxxh - 4  -> R4
MOV @SP,R5 ; Item I3 (TOS) -> R5
MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; overwrite TOS with R7
MOV R8,4(SP) ; modify item I1
PUSH R12 ; store R12 in address 0xxxh - 6; SP points to same address
POP R12 ; restore R12 from address 0xxxh - 6; SP points to 0xxxh - 4
MOV @SP+,R5 ; item I3 -> R5 (popped from Stack); same as POP instruction
PUSH #1
POP R8



CPU, 16bit MSP430 Family

5-6

5

Address PUSH #1 POP R8

0xxxh I1 I1 I1

0xxxh - 2 I2 I2 I2

0xxxh - 4 I3 <- SP I3 I3 <- SP

0xxxh - 6 #1 <- SP

0xxxh - 8

Figure 5.3:  Stack Usage

5.1.3 The Status Register SR

The Status Register SR contains the CPU status bits:

• V Overflow Bit
• SCG1 System Clock Generator Control Bit 1
• SCG0 System Clock Generator Control Bit 0
• OscOff Crystal Oscillator Off Bit
• CPUOff CPU Off Bit
• GIE General Interrupt Enable Bit
• N   Negative Bit
• Z   Zero Bit
• C   Carry Bit

15 9 8 7 0

reserved for future enhancements V SCG1 SCG0 OscOffCPUOf
f

GIE N Z C

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Figure 5.4: Status Register SR

Description of status bits

•• Overflow Bit (V): Set if the result of an arithmetic operation overflows the signed
variable range. It is valid for both data formats, byte and word:

ADD(.B), ADDC(.B) Set when:
Positive  +  Positive  = Negative
Negative + Negative = Positive,
otherwise reset



MSP430 Family CPU, 16bit

5-7

5

SUB(.B), SUBC(.B),CMP(.B): Set when:
Positive  - Negative  = Negative
Negative - Positive   = Positive

 otherwise reset

•• SCG1, SCG0: These bits control four activity states of the system clock
generator and therefore influence the operation of the processor
system.

•• Oscillator Off: If set, the Crystal Oscillator enters the Off Mode: all activities
cease, but the RAM contents, Port and registers are maintained.
Wake-up is possible only by enabled external interrupts when
GIE is set and from NMI. This bit should  n o t   be set without
simultaneously setting CPUOff bit.

•• CPU Off: If set, the CPU enters the Off Mode: all activities ceases, but the
RAM, Port and registers and specially enabled peripherals e.g.
Basic Timer, UART ... stay active. Wake-up is possible by all
enabled interrupts.

•• GIE Bit (GIE): If set, all enabled interrupts are handled. If reset, all interrupts
are disabled. The GIE Bit is cleared by interrupts and restored
by the RETI instruction. It can be also changed by appropriate
instructions.

•• Negative Bit (N): Set if the result of an operation is negative.
Word operations: Negative bit is set to the value of bit 15 of the
result.
Byte operations: Negative bit at is set to the value of bit 7 of the
result.

•• Zero Bit (Z): Set if the result of an operation is 0, cleared if the result is not 0.

•• Carry Bit(C): Set if the result of an operation produced a carry, cleared if no
carry occurred.
Word operation: The carry is as the result of the word operation.
Byte operation: The  carry is as the result of the byte operation.
Some instructions have the carry bit modified with the inverted
zero bits.

Note: Status bits V, N, Z and C

The status bits V, N, Z and C are modified only with the appropriate instruction.
Please see the detailed description of the instruction set, MSP430 Software
User's Guide.



CPU, 16bit MSP430 Family

5-8

5

5.1.4 The Constant Generator Registers CG1 and CG2

The most often used constants can be generated with the constant registers R2 and R3,
without occupying an additional 16-bit-word. The used constant for immediate values is
defined by the addressing bits As:

Register As constant remarks
R2 00 - - - - - Register mode
R2 01 ( 0 ) absolute address mode
R2 10 00004h +4, bit processing
R2 11 00008h +8, bit processing
R3 00 00000h 0, word processing
R3 01 00001h +1
R3 10 00002h +2, bit processing
R3 11 0FFFFh -1, word processing

Table 5.2: Values of constant generators CG1, CG2

The major advantages are allied with the use of this type of constant generation:
• No special instructions
•• No additional word for the seven most used constants
• Shorter instruction cycles time: direct access without use of MDB

The assembler uses the R2 or R3 modes automatically, if one of the six constants is
used in immediate mode as a source operand. The Status Register SR/R2 - used as
source or destination register - can be used in register mode only. The remaining
combinations of address bits As are used to support absolute address mode and bit
processing without adding additional code. Registers R2 and R3 used in the 'constant
mode' cannot be addressed explicitly; they act just like a source only register.

The Constant Generator Registers allow the emulation of several instructions by other
ones. The CPU is much simpler this way. Only 27 instructions are needed for the
complete instruction set. For example the Single Operand Instruction:

CLR dst

is emulated by the Double Operand Instruction with the same length:

MOV R3,dst
or equivalent
MOV #0,dst

where #0 is replaced by the assembler, with R3 used with As = 00:
• one word instruction
• no additional control operation or hardware within CPU
• register addressing mode for source: no extra fetch cycle for constants (#0).



MSP430 Family CPU, 16bit

5-9

5

5.2 Addressing modes

All seven addressing modes for the source operand and all four addressing modes for
the destination operand can address the complete address space. The bit numbers
show the contents of the As and Ad mode bits.

As/Ad Addressing Mode Syntax Description

00/0 Register Mode Rn Register contents are operand

01/1 Indexed Mode X(Rn) (Rn + X) points to the operand.

X is stored in the next word

01/1 Symbolic Mode ADDR (PC + X) points to the operand.

X is stored in the next word.
Indexed Mode X(PC) is used

01/1, Absolute Mode &ADDR The word following the instruc-
tion contains the absolute
address.

10/- Indirect Register
Mode

@Rn Rn is used as a pointer to the
operand

11/- Indirect
Autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards

11/- Immediate Mode #N The word following the instruc-
tion contains the immediate
constant N. Indirect Autoincre-
ment Mode @PC+ is used

Note: Addressing modes

The addressing modes using the PC as the working register use the normal
effects of the addressing modes. The special addressing modes are caused by
the pointing of the PC to the ROM word following the currently executed
instruction.

The seven addressing modes are explained in detail by examples. Most of the examples
show the same addressing modes for source and destination, but any valid combination
of source and destination addressing modes is possible with an instruction.



CPU, 16bit MSP430 Family

5-10

5

5.2.1 Register mode

Assembler Code Content of ROM

MOV    R10,R11 MOV    R10,R11

Length: 1 or 2 word

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV  R10,R11

Before After

R10 0A023h R10 0A023h

R11 0FA15h R11 0A023h

PC PCold PC PCold + 2

Note: Data in registers

Since the data in the registers are word data, any operation register-register
should be a word operation, and word instructions should be used.



MSP430 Family CPU, 16bit

5-11

5

5.2.2 Indexed mode

Assembler Code Content of ROM

MOV    2(R5),6(R6) MOV    X(R5),Y(R6)

X = 2

Y = 6

Length: 2 or 3 words

Operation: Move the contents of the source address (contents of R5 + 2) to the
destination address (contents of R6 + 6). The source and destina-
tion registers (R5 and R6) are not affected. With Indexed mode, the
PC is incremented automatically so that program execution con-
tinues with the next instruction.

Comment: Valid for source and destination

Example: MOV  2(R5),6(R6):

Before: After:
Address
space

Register Address
space

Register

0xxxxh PC
0FF16h 00006h R5 01080h 0FF16h 00006h R5 01080h
0FF14h 00002h R6 0108Ch 0FF14h 00002h R6 0108Ch
0FF12h 04596h PC 0FF12h 04596h

0108Ch
01094h 0xxxxh +0006h 01094h 0xxxxh

01092h 05555h 01092h 01092h 01234h
01090h 0xxxxh 01090h 0xxxxh

01080h
01084h 0xxxxh +0002h 01084h 0xxxxh

01082h 01234h 01082h 01082h 01234h
01080h 0xxxxh 01080h 0xxxxh



CPU, 16bit MSP430 Family

5-12

5

5.2.3 Symbolic mode

Assembler Code Content of ROM

MOV    EDE,TONI MOV    X(PC),Y(PC)

X = EDE - PC

Y = TONI - PC

Length: 2 or 3 words

Operation: Move the contents of the source address EDE (contents of PC + X)
to the destination address TONI (contents of PC + Y). The words
after the instruction contain the differences of the PC and the source
or destination addresses. The assembler computes and inserts the
offsets X and Y automatically. With Symbolic mode, the PC is
incremented automatically so that program execution continues with
the next instruction.

Comment: Valid for source and destination

Example: MOV  EDE,TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h

Before: After:
Address
space

Register Address
space

Register

0xxxxh PC
0FF16h 011FEh 0FF16h 011FEh
0FF14h 0F102h 0FF14h 0F102h
0FF12h 04090h PC 0FF12h 04090h

 0FF14h
0F018h 0xxxxh +0F102h 0F018h 0xxxxh

0F016h 0A123h  0F016h 0F016h 0A123h
0F014h 0xxxxh 0F014h 0xxxxh

0FF16h
01116h 0xxxxh +011FEh 01116h 0xxxxh

01114h 01234h 01114h 01114h 0A123h
01112h 0xxxxh 01112h 0xxxxh



MSP430 Family CPU, 16bit

5-13

5

5.2.4 Absolute mode

Assembler Code Content of ROM

MOV    &EDE,&TONI MOV    X(0),Y(0)

X = EDE

Y = TONI

Length: 2 or 3 words

Operation: Move the contents of the source address EDE to the destination
address TONI . The words after the instruction contain the absolute
address of the source and of the. destination addresses. With
absolute mode, the PC is incremented automatically, so that
program execution continues with the next instruction.

Comment: Valid for source and destination

Example: MOV  &EDE,&TONI ; Source address EDE=0F016h,
; dest. address TONI=01114h

Before: After:
Address
space

Register Address
space

Register

0xxxxh PC
0FF16h 01114h 0FF16h 01114h
0FF14h 0F016h 0FF14h 0F016h
0FF12h 04292h PC 0FF12h 04292h

0F018h 0xxxxh 0F018h 0xxxxh
0F016h 0A123h 0F016h 0A123h
0F014h 0xxxxh 0F014h 0xxxxh

01116h 0xxxxh 01116h 0xxxxh
01114h 01234h 01114h 0A123h
01112h 0xxxxh 01112h 0xxxxh

The main use of this address mode is for hardware peripheral modules that are located
at an absolute, fixed address. These should be addressed with absolute mode to ensure
software transportability e.g. position independent code (PIC) programming techniques.
Absolute mode always uses code segment 0.



CPU, 16bit MSP430 Family

5-14

5

5.2.5 Indirect mode

Assembler Code Content of ROM

MOV    @R10,0(R11) MOV    @R10,0(R11)

Length: 1 or 2 word(s)

Operation: Move the contents of the source address (contents of R10) to the
destination address (contents of R11). The registers are not
modified.

Comment: Valid only for source operand. Substitute for destination operand is
0(Rd).

Example: MOV.B  @R10,0(R11)

Before: After:
Address
space

Register Address
space

Register

0xxxxh 0xxxxh PC
0FF16h 0000h R10 0FA33h 0FF16h 0000h R10 0FA33h
0FF14h 04AEBh PC R11 002A7h 0FF14h 04AEBh R11 002A7h
0FF12h 0xxxxh 0FF12h 0xxxxh

0FA34h 0xxxxh 0FA34h 0xxxxh
0FA32h 05BC1h 0FA32h 05BC1h
0FA30h 0xxxxh 0FA30h 0xxxxh

002A8h 0xxh 002A8h 0xxh
002A7h 012h 002A7h 05Bh
002A6h 0xxh 002A6h 0xxh



MSP430 Family CPU, 16bit

5-15

5

5.2.6 Indirect autoincrement mode

Assembler Code Content of ROM

MOV    @R10+,0(R11) MOV    @R10+,0(R11)

Length: 1 or 2 word(s)

Operation: Move the contents of the source address (contents of R10) to the
destination address (contents of R11). The register R10 is
incremented by one (byte operation) or two (word operation) after
the fetch: it points to the next address now without any overhead.
This is very useful for table processing.

Comment: Valid only for source operand. Substitute for destination operand is
0(Rd) plus second instruction INCD Rd.

Example: MOV  @R10+,0(R11)

Before: After:
Address
space

Register Address
space

Register

0FF18h 0xxxxh 0FF18h 0xxxxh PC
0FF16h 00000h R10 0FA32h 0FF16h 00000h R10 0FA34h
0FF14h 04ABBh PC R11 010A8h 0FF14h 04ABBh R11 010A8h
0FF12h 0xxxxh 0FF12h 0xxxxh

0FA34h 0xxxxh 0FA34h 0xxxxh
0FA32h 05BC1h 0FA32h 05BC1h
0FA30h 0xxxxh 0FA30h 0xxxxh

010AAh 0xxxxh 010AAh 0xxxxh
010A8h 01234h 010A8h 05BC1h
010A6h 0xxxxh 010A6h 0xxxxh

The autoincrement of the registers' content is done after the operand is fetched for
performing the operation.

Instruction Address Operand

+1 / +2



CPU, 16bit MSP430 Family

5-16

5

5.2.7 Immediate mode

Assembler Code Content of ROM

MOV    #45,TONI MOV    @PC+,X(PC)

45

X = TONI - PC

Length: 2 or 3 words
It is 1 word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45 which is contained in the word
following the instruction to the destination address TONI. When
fetching the source, the PC points to the word after the instruction
and moves the contents to the destination.

Comment: Valid only for source operand.

Example: MOV  #45,TONI

Before: After:
Address
space

Register Address
space

Register

0FF18h 0xxxxh PC
0FF16h 01192h 0FF16h 01192h
0FF14h 00045h 0FF14h 00045h
0FF12h 040B0h PC 0FF12h 040B0h

0FF16h
010AAh 0xxxxh +01192h 010AAh 0xxxxh

010A8h 01234h 010A8h 010A8h 00045h
010A6h 0xxxxh 010A6h 0xxxxh



MSP430 Family CPU, 16bit

5-17

5

5.2.8 Clock cycles, Length of Instruction

The operating speed of the CPU is independent of individual instructions. It depends on
the instruction format and the addressing modes. The number of clock cycles refer to
the internal oscillator frequency.

Format ΙΙ Instructions

Address Mode # of cycles Length of Example
As Ad instruction

00, Rn 0, Rm
0,PC

1
2

1
1

MOV  R5,R8
BR      R9

00, Rn 1, x(Rm)
1, EDE

4 2
2

ADD  R5,3(R6)
XOR  R8,EDE

1, &EDE 2 MOV  R5,&EDE
01, x(Rn)
01, EDE
01, &EDE

0, Rm 3 2
2

MOV  2(R5),R7
AND  EDE,R6
MOV  &EDE,R8

01, x(Rn)
01, EDE

1, x(Rm)
1, TONI

6 3
3

ADD  3(R4),6(R9)
CMP  EDE,TONI

01, &EDE 1, &TONI 3 MOV  2(R5),&TONI
ADD EDE,&TONI

10, @Rn 0, Rm 2 1 AND  @R4,R5
10, @Rn 1, x(Rm)

1, EDE
5 2

2
XOR  @R5,8(R6)
MOV  @R5,EDE

1, &EDE 2 XOR  @R5,&EDE
11, @Rn+

11, #N

0, Rm
0, PC
0, Rm
0, PC

2
3
2
3

1
1
2
2

ADD  @R5+,R6
BR     @R9+
MOV  #20,R9
BR     #2AEh

11, @Rn+
11, #N

1, x(Rm)
1, EDE

5 2
3

MOV  @R9+,2(R4)
ADD  #33,EDE

11, @Rn+
11, #N

1, &EDE 2
3

MOV  @R9+,&EDE
ADD  #33,&EDE



CPU, 16bit MSP430 Family

5-18

5

Format II Instructions

Address Mode # of cycles Length of Example
A(s/d) RRA

RRC
SWPB
SXT

PUSH/
CALL

instruction
[words]

00, Rn 1 3/4 1 SWPB  R5
01, x(Rn)
01, EDE
01,&EDE

4
4

5
5

2
2

CALL  2(R7)
PUSH  EDE
SXT &EDE

10, @Rn 3 4 1 RRC  @R9

11, @Rn+   see
Note

11, #N

3 4/5 1
2

SWPB  @R10+
CALL  #81h

Note: Instruction Format II immediate mode

Instructions RRA, RRC, SWPB and SXT should not be used with the immediate
mode in the destination field. This would result in unpredictable program
operation.

Format ΙΙΙΙΙΙ Instructions

Jxx - instructions need all the same #-of-cycles independent of a successful Jump or
not.

Clock Cycle: 2 Cycle
Length of Instruction: 1 word

Miscellanous Instructions or Operations

RETI Clock Cycle: 5 Cycle
Length of instruction: 1 word

Interrupt Clock Cycle: 6 Cycle
WDTreset Clock Cycle: 4 Cycle
Reset (RST/NMI) Clock Cycle: 4 Cycle



MSP430 Family CPU, 16bit

5-19

5

5.3 Instruction set overview

The following gives a short overview of the instruction set.

The effects of an instruction on the Status Register Bits are shown below:

* The Status Bit is affected
- The Status Bit is not affected
0 The Status Bit is cleared
1 The Status Bit is set

The source and destination parts of an instruction are defined by two fields each (the
addressing modes are described above):

src The source operand defined by As and S-reg
dst The destination operand defined by Ad and D-reg
As The addressing bits responsible for the addressing mode used for the 

source src
S-reg The used Working Register for the source src
Ad The addressing bits responsible for the addressing mode used for the

destination dst
D-reg The used Working Register for the destination dst
B/W Byte or word operation: 0: word operation

1: byte operation

Note: Destination Address

The destination can be anywhere in the 64kByte address range. Operations that
write data back should use address ranges into those data can be written,
otherwise the data is lost.



CPU, 16bit MSP430 Family

5-20

5

5.3.1 Double operand instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode S-Reg Ad B/W As D-Reg

Figure 5.5: Double Operand Instruction Format

Status Bits
V N Z C

MOV src,dst src -> dst - - - -
ADD src,dst src + dst -> dst * * * *
ADDC src,dst src + dst + C -> dst * * * *
SUB src,dst dst + .not.src + 1 -> dst * * * *
SUBC src,dst dst + .not.src + C -> dst * * * *
CMP src,dst dst - src * * * *
DADD src,dst src + dst + C -> dst (dec) * * * *
AND src,dst src .and. dst -> dst 0 * * *
BIT src,dst src .and. dst 0 * * *
BIC src,dst .not.src .and. dst -> dst - - - -
BIS src,dst src .or. dst -> dst - - - -
XOR src,dst src .xor. dst -> dst * * * *

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except the storage of the result. The
same is true for the BIT and the AND instruction.



MSP430 Family CPU, 16bit

5-21

5

5.3.2 Single operand instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode B/W Ad D/S-Reg

Figure 5.6: Single  Operand Instruction Format

Status Bits
V N Z C

RRC dst C -> MSB -> ........LSB -> C * * * *
RRA dst MSB -> MSB ->...LSB -> C 0 * * *
PUSH src SP - 2 -> SP, src -> @SP - - - -
SWPB dst swap bytes - - - -
CALL dst SP - 2 -> SP

PC+2 -> stack, dst -> PC
- - - -

RETI TOS -> SR, SP <- SP + 2
TOS -> PC, SP <- SP + 2

x x x x

SXT dst Bit7 -> Bit8 ........ Bit15 0 * * *

All addressing modes are possible for the CALL instruction. If the Symbolic Mode
(ADDRESS), the Immediate Mode (#N), the Absolute Mode (&EDE) or the Indexed
Mode X(Rn)) is used, the instructions have the address information contained in the
following word.



CPU, 16bit MSP430 Family

5-22

5

5.3.3 Conditional Jumps

The conditional jumps allow program branches relative to the Program Counter. The
possible range is from -511 to +512 words relative to the PC state of the Jump
instruction. The 10-bit PC offset is treated as a signed 10-bit value which is doubled and
added to the Program Counter. The conditional jumps do not affect the Status Bits.

The instruction code fetch and PC increment technique used ends with the formula:

PCnew = PCold + 2 + PCoffset * 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode C 10-bit PC offset

Figure 5.7: Conditional Jump Instruction Format

JEQ/JZ Label Jump to Label if Zero-bit is set

JNE/JNZ Label Jump to Label if Zero-bit is reset

JC Label Jump to Label if Carry-bit is set

JNC Label Jump to Label if Carry-bit is reset

JN Label Jump to Label if Negative-bit is set

JGE Label Jump to Label if (N .XOR. V) = 0

JL Label Jump to Label if (N .XOR. V) = 1

JMP Label Jump to Label unconditionally

The instruction code fetch and PC increment technique used ends with the formula:

PCnew = PCold + 2 + PCoffset * 2



MSP430 Family CPU, 16bit

5-23

5

5.3.4 Short form of emulated instructions

The basic instructions together with the constant generator form the emulated instruction
which supplies popular instructions. The status bits are set according to the result of the
basic instructions.

Mnemonic Description Statusbits Emulation

V N Z C
Arithmetical instructions
ADC[.W] dst Add carry to destination * * * * ADDC #0,dst
ADC.B dst Add carry to destination * * * * ADDC.B #0,dst
DADC[.W] dst Add carry decimal to destination * * * * DADD #0,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #0,dst
DEC[.W] dst Decrement destination * * * * SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-Decrement destination * * * * SUB #2,dst
DECD.B dst Double-Decrement destination * * * * SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * * ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * * SUBC #0,dst
SBC.B dst Subtract carry from destination * * * * SUBC.B #0,dst

Logical instructions
INV[.W] dst Invert destination * * * * XOR #0FFFFh,dst
INV.B dst Invert destination * * * * XOR.B #0FFFFh,dst
RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst
RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * ADDC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data instructions (common use)
CLR[.W] lear destination - - - - MOV #0,dst
CLR.B lear destination - - - - MOV.B #0,dst
CLRC lear carry bit - - - 0 BIC #1,SR
CLRN lear negative bit - 0 - - BIC #4,SR
CLRZ lear zero bit - - 0 - BIC #2,SR
POP dst Item from stack - - - - MOV @SP+,dst
SETC Set carry bit - - - 1 BIS #1,SR
SETN Set negative bit - 1 - - BIS #4,SR
SETZ Set zero bit - - 1 - BIS #2,SR
TST[.W] dst Test destination 0 * * * CMP #0,dst
TST.B dst Test destination 0 * * * CMP.B #0,dst

Program flow instructions
BR dst Branch to ....... - - - - MOV dst,PC
DINT Disable interrupt - - - - BIC #8,SR
EINT Enable interrupt - - - - BIS #8,SR
NOP No operation - - - - MOV #0h,#0h
RET Return from subroutine - - - - MOV @SP+,PC



CPU, 16bit MSP430 Family

5-24

5

5.3.5 Miscellaneous

No instructions without operands such as CPUOff etc. are provided. These functions are
switched on or off by setting or clearing of the function bits in the Status Register or the
appropriate I/O-register. Others are emulated by Dual Operand Instructions.

Some examples are given below:

BIC #1,SR ; Clear Carry
MOV #0,#0 ; No Operation
BIC #8,SR ; Disable Interrupts
BIS #28h,SR ; Enter OscOff Mode

; + enable gen. interrupt GIE
BIS #18h,SR ; Enter CPUOff Mode

; + enable gen. interrupt GIE
BIC #SVCC,ACTL ; SWITCH SVCC OFF



MSP430 Family CPU, 16bit

5-25

5

5.4 Instruction map

The following instruction map is a proposal of how to encode the instructions. Room is
free for more instructions if needed.

0x

04x

08x

0Cx

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

10x RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

14x

18x

1Cx

20x

28x

24x

2Cx

30x

34x

3Cx

40x..4Cx

JNE/JNZ

JEQ/JZ

JNC

JC

JN

JGE

JL

JMP

38x

MOV, MOV.B

50x..5Cx ADD, ADD.B

60x..6Cx ADDC, ADDC.B

70x..7Cx SUBC, SUBC.B

80x..8Cx

90x..9Cx

SUB, SUB.B

CMP, CMP.B

A0x..ACx DADD, DADD.B

B0x..BCx

C0x..CCx

D0x..DCx

E0x..ECx

F0x..FCx

BIT, BIT.B

BIC, BIC.B

BIS, BIS.B

XOR, XOR.B

AND, AND.B

Figure 5.8 : Core instruction map



CPU, 16bit MSP430 Family

5-26

5



MSP430 Family Hardware Multiplier

6-1

6

6 Hardware Multiplier

The hardware multiplier is realized as each other 16 bit peripheral module, and not
integrated into the CPU. The CPU is unchanged through all configurations, and the
instruction set is not modified. It take no extra cycle for multiplication. Both operands are
loaded into the multiplier’s register and the result can be accessed immediately after
loading the second operand.

Topic Page

6.1 Hardware Multiplier Operation 6-4

6.2 Hardware Multiplier Registers 6-9

6.3 Hardware Multiplier Special Function bits 6-10

6.4 Hardware Multiplier Software Restrictions 6-10



Hardware Multiplier MSP430 Family

6-2

6



MSP430 Family Hardware Multiplier

6-3

6

The Hardware Multiplier Module expands the capabilities of the MSP430 family without
changing the basic architecture. Multiplication is possible for:
• 16 x 16 bit
• 16 x 8 bit
• 8 x 16 bit
• 8 x 8 bit

The hardware multiplier module supports three types of multiplication: unsigned
multiplication (MPY), signed multiplication (MPYS) and unsigned multiplication and
accumulation (MAC).

ROM RAM

CPU

incl. 16 reg.

MPY

MAB, 16bit

MDB, 16bit

Test

JTAG

TMS

TCK

TDI

TDO

MPYS

MAC

Figure 6.1: Connection of the Hardware Multiplier Module to the Bus System



Hardware Multiplier MSP430 Family

6-4

6

6.1 Hardware Multiplier Operation

The hardware multiplier has two 16-bit registers for both operands, and three registers
where the result of the multiplication is stored. The multiplication is executed correctly
when the operand OP1 is written prior of the second operand OP2 to the operands’
registers. The type of multiplication is selected when the first operand is written to the
appropriate register. Writing the second operand to the appropriate register starts the
multiplication. It is completed before the result registers are accessed using indexed
address mode for the source operand. Another instruction is needed between the write
of the second operand and the access to result registers, when indirect or indirect
autoincrement address mode is used. Both operands - transferred to the hardware
multiplier - have all seven address mode capabilities.
No instruction for the multiplication is added, which means that the real-time operation
and the interrupt latency is unchanged.



MSP430 Family Hardware Multiplier

6-5

6

Multiply unsigned, 16x16bit, 16x8bit, 8x16bit, 8x8bit

********************************************************************
*      TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE     *
*      MULTIPLIER MODULE                                           *
*    USE CONSTANT OPERAND1 AND OPERAND 2 TO IDENTIFY BYTE DATA     *
********************************************************************
OPERAND1 .EQU 0 ; 0:  OPERAND1 IS WORD (16BIT)

; 8:  OPERAND1 IS BYTE ( 8BIT)
OPERAND2 .EQU 0 ; 0:  OPERAND2 IS WORD (16BIT)

; 8:  OPERAND2 IS BYTE ( 8BIT)
MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=8
MOV.B &OPER1,&MPY ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY
.ELSE
MOV &OPER1,&MPY ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY
.ENDIF

.IF OPERAND1=8
MOV.B &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION
.ELSE
MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION
.ENDIF

********************************************************************
*      EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION    *
*      TO THE RAM DATA, 64BITS                                     *
********************************************************************

ADD &RESLO,&RAM ; ADD LOW RESULT TO RAM
ADDC &RESHI,&RAM+2 ; ADD HIGH RESULT RO RAM+2
ADC &RAM+4 ; ADD CARRY TO EXTENSION WORD
ADC &RAM+6 ; IF 64 BIT LENGHT IS USED

32 Bytes of program code, 32 execution cycles (16x16bit multiplication)



Hardware Multiplier MSP430 Family

6-6

6

Multiply signed, 16x16bit, 16x8bit, 8x16bit, 8x8bit

********************************************************************
*      TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE     *
*      MULTIPLIER MODULE                                           *
*      IF ONE OF THE OPERANDS IS 8BIT, SIGN EXTENSION IS NEEDED    *
*    USE CONSTANT OPERAND1 AND OPERAND 2 TO IDENTIFY BYTE DATA     *
********************************************************************
OPERAND1 .EQU 0 ; 0:  OPERAND1 IS WORD (16BIT)

; 8:  OPERAND1 IS BYTE ( 8BIT)
OPERAND2 .EQU 0 ; 0:  OPERAND2 IS WORD (16BIT)

; 8:  OPERAND2 IS BYTE ( 8BIT)
MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=0
MOV &OPER1,&MPYS ; LOAD 1ST (WORD) OPERAND

; DEFINES ADD. SIGNED MULTIPLY
.ELSE
MOV.B &OPER1,&MPYS ; LOAD 1ST (BYTE) OPERAND,

; DEFINES ADD. SIGNED MULTIPLY
SXT &MPYS ; EXPAND BYTE TO SIGNED WORD DATA
.ENDIF
.IF OPERAND2=0
MOV &OPER2,&OP2 ; LOAD 2ND (WORD) OPERAND  AND 

; START SIGNED MULTIPLICATION
.ELSE
MOV.B &OPER2,&OP2 ; LOAD 2ND (BYTE) OPERAND,
SXT &OP2 ; RE-LOAD 2ND OPERAND  AND START 

; SIGNED ‘FINAL’ MULTIPLICATION
.ENDIF

********************************************************************
*      EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION    *
*      TO THE RAM DATA, 64BITS                                     *
********************************************************************

ADD &RESLO,&RAM ; ADD LOW RESULT TO RAM
ADDC &RESHI,&RAM+2 ; ADD HIGH RESULT RO RAM+2
ADDC &SUMEXT,&RAM+4 ; ADD SIGN WORD TO EXTENSION WORD
ADDC &SUMEXT,&RAM+6 ; IF 64 BIT LENGHT IS USED

36 Bytes program code, 36 execution cycles (16x16bit multiplication)



MSP430 Family Hardware Multiplier

6-7

6

Multiply unsigned and accumulate,
16x16bit, 16x8bit, 8x16bit, 8x8bit

********************************************************************
*      TRANSFER BOTH OPERANDS TO THE REGISTERS IN THE HARDWARE     *
*      MULTIPLIER MODULE                                           *
*      THE RESULT OF THE MULTIPLICATION IS ADDED TO THE CONTENT    *
*      OF BOTH RESULT REGISTERS, RESLO AND RESHI                   *
*      USE CONSTANT OPERAND1 AND OPERAND 2 TO IDENTIFY BYTE DATA   *
********************************************************************
OPERAND1 .EQU 0 ; 0:  OPERAND1 IS WORD (16BIT)

; 8:  OPERAND1 IS BYTE ( 8BIT)
OPERAND2 .EQU 0 ; 0:  OPERAND2 IS WORD (16BIT)

; 8:  OPERAND2 IS BYTE ( 8BIT)
MPY .EQU 0130H
MPYS .EQU 0132H
MAC .EQU 0134H
OP2 .EQU 0138H
RESLO .EQU 013AH
RESHI .EQU 013CH
SUMEXT .EQU 013EH

.BSS OPER1,2,200H

.BSS OPER2,2

.BSS RAM,8

.IF OPERAND1=8
MOV.B &OPER1,&MAC ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY
.ELSE
MOV &OPER1,&MAC ; LOAD 1ST OPERAND,

; DEFINES ADD. UNSIGNED MULTIPLY
.ENDIF

.IF OPERAND1=8
MOV.B &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION
.ELSE
MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START

; MULTIPLICATION
.ENDIF



Hardware Multiplier MSP430 Family

6-8

6

********************************************************************
*      EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION    *
*      TO THE RAM DATA, 64BITS                                     *
*      THE RESULT OF THE MULTIPLICATION IS HELD IN RESLO AND       *
*      RESHI REGISTERS. THE UPPER TWO WORDS IN THE EXAMPLE ARE     *
*      FURTHER LOCATED IN THEIR RAM LOCATION                       *
********************************************************************

ADDC &SUMEXT,&RAM+4 ; ADD SUMEXTENSION TO RAM+4
ADC &RAM+6 ; IF 64 BIT LENGHT IS USED

32 Bytes program code, 32 execution cycles (16x16bit multiplication)



MSP430 Family Hardware Multiplier

6-9

6

6.2 Hardware Multiplier Registers

The hardware multiplier module hardware is word structured, but it can be accessed by
word or byte processing instructions.

Register short form Register type Address Initial state

• Multiply Unsigned/Op.1 MPY Type of read/write   0130h unchanged
• Multiply Signed/Operand1 MPYS Type of read/write   0132h unchanged
• Multiply+Accumulate/Op.1 MAC Type of read/write   0134h unchanged
• Reserved   0136h unchanged
• Second Operand OP2 Type of read/write   0138h unchanged
• Result Low Word ResLo Type of read/write   013Ah undefined
• Result High Word ResHi Type of read/write   013Ch undefined
• Sum Extend register SumExt Type of read   013Eh undefined

There are two registers implemented for both operands, operand OP1 and OP2. The
operand 1 use three different addresses to address the same register. The different
address information is decoded and defines the type of multiplication - unsigned, signed
and unsigned+accumulate.

Operand 1, OP1

R e s e r v e d

Operand 2, OP2

Result Low Word, ResLo

MPY   (130h)

MPYS (132h)

MAC   (134h)

reserved  (136h)

OP2  (138h)

15 0

ResLo  (13Ah)

Result Low Word, ResHiResHi  (13Ch)

Sum Extension Word, SumExtSumExt (13Eh)

Figure 6.2: Registers of the Hardware Multiplier

The result is located in two word registers, the result high RESHI and result low RESLO
register. The sum extend register SumExt holds the sign of the result of a signed
16x16bit multiplication, or holds the overflow of the multiply and accumulate (MAC)
operation.
All registers have the LSB at bit0 and the MSB at bit7 (byte data) or bit15 (word data).



Hardware Multiplier MSP430 Family

6-10

6

6.3 Hardware Multiplier Special Function bits

The hardware multiplier module completes all multiply operations fast without interrupt
intervention, and therefore no special function bits are used.

6.4 Hardware Multiplier Software Restrictions

Two special cases need attention when the hardware multiplier is used:

• Use of indirect or indirect autoincrement address mode to process the result
• Use of the hardware multiplier in an interrupt routine

6.4.1 Hardware Multiplier Software Restrictions - Address mode

The access to the result of a multiplication works in indexed, indirect or indirect
autoincrement mode. The access to the result registers can be done without any
restrictions if indexed address mode is used - including symbolic and absolute address
mode. Whenever the indirect and indirect autoincrement address mode is used to
access the result registers, at least one instruction between the load of the second
operand and access to one of the result registers is needed:

********************************************************************
*    EXAMPLE: MULTIPLY OPERAND1 AND OPERAND 2                      *
********************************************************************
RESLO .SET 013AH ; RESLO = ADDRESS OF RESLO

PUSH R5 ; R5 WILL HOLD THE ADDRESS OF
MOV #RESLO,R5 ; THE RESLO REGISTER

MOV &OPER1,&MPY ; LOAD 1ST OPERAND,
; DEFINES ADD. UNSIGNED MULTIPLY

MOV &OPER2,&OP2 ; LOAD 2ND OPERAND AND START
; MULTIPLICATION

********************************************************************
*      EXAMPLE TO ADD THE RESULT OF THE HARDWARE MULTIPLICATION    *
*      TO THE RAM DATA, 64BITS                                     *
********************************************************************

NOP ; MIN. ONE CYLES BETWEEN MOVING
; THE OPERAND2 TO HW-MULTIPIER
; AND PROCESSSING THE RESULT WITH
; INDIRECT ADDRESS MODE

ADD @R5+,&RAM ; ADD LOW RESULT TO RAM
ADDC @R5,&RAM+2 ; ADD HIGH RESULT RO RAM+2
ADC &RAM+4 ; ADD CARRY TO EXTENSION WORD
ADC &RAM+6 ; IF 64 BIT LENGHT IS USED

POP R5



MSP430 Family Hardware Multiplier

6-11

6

The example shows that the indirect or indirect address mode - used to transfer the
result of a multiplication to the destination - needs more cycles and code than the
absolute address mode. Obviously there is no special need to access the absolute
hardware multiplier using indirect addressing mode.

6.4.2 Hardware Multiplier Software Restrictions - Interrupt Routines

The entire multiplication routine uses three major steps:

- move the operand OP1 to the hardware multiplier, the type of multiplication is defined
- move the operand OP2 to the hardware multiplier, the multiplication is started
- process the result of the multiplication in RESLO, RESHI SUMEXT registers

The following considerations are useful if the main routines use hardware multiplication.
If no hardware multiplication is used in the main routines, the multiplication in an
interrupt routine is protected from further interrupts, since the general interrupt enable bit
is reset after entering the interrupt service routine. Normally a multiplication with the
entire data processing should be done outside an interrupt routine following the rule:
Keep interrupt routines as short as possible.

A multiplication in an interrupt routine has some feedback to the multiplication routine in
the main routine:

Interrupt occurs after the  first operand OP1 is transferred into hardware
multiplier

The two LSBs of the first operand’s address defines the type of multiplication.
This information can not be recovered by any later operation. The interrupt
should not be able to be accepted between the first two steps - move operand
OP1 and operand OP2 to the multiplier.

Interrupt occurs after the  second operand OP2 is transferred into hardware
multiplier

After the first two steps, the result is already in the corresponding registers
RESLO, RESHI and SUMEXT and can be saved e.g. on the stack (PUSH ...)
and restored after completing another multiplication (POP ...). But additional
code and cycles in the interrupt routine are used. This can be avoided when
the entire multiplication routine is protected by disabling any interrupt (DINT)
before entering the multiplication routine and enabling interrupts (EINT) after
the multiplication routine is completed. A negative impact on this method is
that the critical interrupt latency is increased drastically for events which occur
during this period.

General recommendation
In general a hardware multiplication within an interrupt routine should be avoided when a
hardware multiplication is already used in main routines. The application specific



Hardware Multiplier MSP430 Family

6-12

6

software, applied libraries or other included software should be taken into consideration.
The different methods discussed show more negative implications than positive.
Following the general recommendation to shorten interrupt routines is the best practice.



MSP430 Family Oscillator, System Clock Generator

7-1

7

7 Oscillator and System Clock Generator

Topic Page

7.1 Crystal Oscillator 7-4

7.2 Processor Clock Generator 7-4

7.3 System Clock Operating Modes 7-7

7.4 System Clock Control Register 7-9

7.5 DCO Characteristic - typical 7-12



Oscillator, System Clock Generator MSP430 Family

7-2

7



MSP430 Family Oscillator, System Clock Generator

7-3

7

The oscillator and the system clock generator follow the major targets of low system cost
and low power consumption.

External component count is reduced down to a commonly used crystal to achieve the
target of low system cost. The use of a low frequency crystal and oscillator combined
with a multiplier meets system cycle speed and the second target of low power
consumption.

Features for current limited applications

Special other features are obviously mandatory in very low power consuming devices
that use the various extended operating modes. These features include startup timing,
long term frequency stability with voltage, temperature and time, and a highly-stable time
base for real time clocks.

Current limited real-time applications demand two conflicting requirements: low system
clock frequency for energy conservation, and high system clock frequency for fast
reaction to requesting events. Especially battery based applications are very critical with
respect to current consumption. Response to external events or time requests typically
requires occasionally high speed in real-time applications.

A processor clock generator with fast start-up allowing exhaustive use of different power
dissipation modes could theoretically solve this dilemma. On the other hand, fast start-
up is closely combined with unacceptably low frequency stability. Design with multiple
clock sources or different clock operations could take into account the clock
requirements of certain peripheral components for real-time applications such as low
frequency communication, display (e.g. LCD), timers and counters.

Control logic

Digital Controlled Osc.

Control Reg.

MDB
PUC

ACLK MCLK
Auxiliary Clock Main System Clock (fsystem)

Low power Oscillator
for 32,768 kHz crystal

3

Control bit in SR
8

Figure 7.1: Principle of Clock Generation

The output of the low frequency crystal oscillator provides the clock signals for the CPU
operation and the peripheral modules. The oscillator of the MSP430 operates with the
widely used crystal, without any external components.



Oscillator, System Clock Generator MSP430 Family

7-4

7

The different requirements of CPU and modules, from the point of view of current
consumption objectives, requires the use of two clock signals:
• Auxiliary Clock ACLK with crystal's frequency
• System Clock MCLK with a higher frequency:  N x fcrystal.

7.1 Crystal Oscillator

The special design of the oscillator supports the features of low current consumption
and the use of a 32 768Hz crystal. The crystal is connected to two pins without any other
external components. All components for stabilizing the operation state or phase shifter
capacitors are integrated.

Two factors dominate the choice of the well-known and widely used watch crystal:
• oscillator and time base for low current consumption
• optimize system costs.

The oscillator starts operating after applying VCC due to reset of the control bit OscOff
in the Status Register SR. It can be stopped by setting the OscOff bit.

15 8 7 0
reserved for future enhancements

V
SCG

1
SCG

0
Osc
Off

CPU
Off GIE N Z C

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

Figure 7.2: Status Register SR

7.2 Processor Clock Generator

The System Clock of controllers has to meet different requirements, according to the
application and system conditions:

• High frequency, to react fast onto system hardware requests or events
• Low frequency, to minimize current consumption, EMI, .....
• Stable frequency for timer applications e.g. real time clock RTC
• Low-Q oscillators to enable start-stop operation with 'zero' delay to operation.

All the conflicting but essential requests can not be handled, either with high-Q, fast
frequency crystals,  or with low-Q RC-type oscillators. Proper current consumption and
the frequency stability mentioned require the use of a low frequency crystal. The
compromise used in the MSP430 is to use a low frequency crystal, and to multiply its
frequency up to the nominal operating range:

fSystem = N x  fcrystal



MSP430 Family Oscillator, System Clock Generator

7-5

7

Different ways for multiplication of the crystal's frequency to the system frequency are
known, and several are practiced. The most known methods are the Phase-Locked-
Loop PLL technique, and Frequency-Locked-Loop FLL.

The PLL technique has two major disadvantages in systems with frequently and time-
undefined intermitted operating modes. PLL's are systems following second order
response. All the on-off operating modes result in out-of-phase conditions, and therefore
in continuous 'limp-mode' handling. The wide ranges of off-time conditions conflict with
the use of analog filter-integrators in the closed loop. Changes in the capacitor's charge
automatically result in phase and/or frequency deviations and an improper frequency
until the system is in phase.

The FLL technique, in combination with a digital controlled oscillator (DCO), avoids both
serious problems.

The major features of the DCO are:
• fast start-up
• digital (not analogs) control signals.

Beside these advantages one item needs careful consideration: the variation of the
frequency with the supply voltage and temperature.

The DCO is absolutely monotone.

The FLL operates as a continuous frequency integrator. An up/down counter that follows
the loop control corrects permanently the multiplication factor N. The follow-up or up-
date rate is identically to the crystal's frequency rate. Using a 32,768 kHz crystal the rate
is 30.5µs.

The accumulated frequency error is the same as that of  the crystal's. The time deviation
from one machine cycle to another is typically less than 10%.

∆ f

pos. deviation

neg. deviation

Σ ∆f = 0

Figure 7.3: System frequency vs. time

The start-up operation of the system clock depends on the previous machine state.
During a PUC the DCO is reset to its lowest possible frequency. The control logic starts
operation immediately after removing the PUC condition. Proper working condition for
the control logic needs the presence of stable crystal oscillation.



Oscillator, System Clock Generator MSP430 Family

7-6

7

The frequency integrator of 10bit length controls the frequency at which the DCO is
running with. The integrator - starting at zero digital value after PUC - counts up to run
the frequency fSystem  at the selected value N. It takes slightly more periods of the crystal
input than the suggested number of 10bit or 1024, if the maximum length of the
frequency integrator is needed. The control logic system operates aperiodically.

Applications that run the controller with intermitted operation need some attention to the
conditions of handling the system frequency control conditions. The correction of the
frequency integrator is possible each period of the crystal (30.5 µs @ 32,768 Hz) plus
the period of fSystem/N. Longer integration periods are mandatory to avoid accumulating
deviations in time.

: N

Register SCFQCTL

DCO

fcrystal

fSystem

-

+

Synchro-
nizer

U/D

Clk

Frequency Integrator

PUC

OscOff,

Limp mode

Reset

Enable
10bit

SCG0, SCG1 Operating Modes
Control of

Set interrupt flag in SFR's
MDB

DC Gen.

ACLK

MCLK

5

Figure 7.4: Schematic of system frequency generator

Two flags are incorporated in the special function register which allow the application
program to get back control over the system, if the digital controlled oscillator is at its
upper or lower frequency limit.

The operation at the upper or lower limit can be easily detected by controlling the
frequency integrator via access to SCFI0 and/or SCFI1.



MSP430 Family Oscillator, System Clock Generator

7-7

7

7.3 System Clock Operating Modes

The system clock generator and crystal oscillator are controlled by three signals. These
signals are located in the status register SR and are reset during the four different
power-up conditions.

These three control signals provide the system application with different operating
conditions  and maximum flexibility to optimize overall system power consumption.
During some combinations of the three control signals the system clock MCLK stops
operation; the existing value of the frequency integrator remains.

SCG1 SCG0 OscOff Crystal
oscillator

DC Generator DCO Loop
control

Comments

0 0 0 ON ON ON ON Condition after PUC
Crystal and DC oscillator are active
Loop control is operating

0 1 0 ON ON ON OFF Low Power Mode LPM1
Crystal and DC oscillator are active
Loop control is off

1 0 0 ON ON OFF OFF Low Power Mode LPM2
Crystal oscillator  and DC Generator
are active
DCO and Loop control are off

1 1 0 ON OFF OFF OFF Low Power Mode LPM3
Crystal oscillator is active All other
functions are off

X X 1 OFF OFF OFF OFF Low Power Mode LPM4
All functions are disabled
f
MCLK = f

AClk
 = 0Hz

The three control signals provide five different power down modes, supporting ultra-low
power applications, by making intensive use of them. All these different modes provide
the system application with the potential for operation with the smallest time slot
possible, and the optimized current consumption in each time slot.

The SCG0 bit controls the FLL loop if it is operating (SCG0 is reset) or off (SCG0 is set).

Starting from PUC
The system clock control register SCFQCTL is set to 01Fh with PUC, and the frequency
integrator is reset. The reset of the frequency integrator sets the system frequency to its
lowest value, and counts up continuously until it locks at a system frequency that is
equal to N times the crystal frequency.



Oscillator, System Clock Generator MSP430 Family

7-8

7

Low Power Mode LPM4, Oscillator off
During the oscillator off mode all parts of the processor are inactive, and the current
consumption is at its lowest limit. Starting with operation is only possible after power-up
circuitry has detected a low supply voltage condition or any external interrupt event that
will request an interrupt asynchronously. The appropriate enable for interrupt sources
should be applied during the program flow.

The start-up sequence of the system clock generator out of oscillator off mode:
• the present system frequency defined by the output value of the frequency integrator

and the DCO characteristic will continue running
• the frequency integrator is continuously counted down with the frequency of

fSystem/N till the DCO is running at its lowest frequency as long as the crystal
oscillator has not started operation

• after the crystal oscillator starts operation, the loop control will settle the frequency
integrator to the value following fSystem = N * fcrystal.

Low Power Mode LPM3 , DC Generator off
During the DC generator off mode only the crystal oscillator is active. The DC current of
the DC generator that sets the basic timing conditions is switched off. The power
consumption constraints force high impedance design. The start of the DCO from
power-down mode with DC generator off  can take some time (tDCGon) to run with the
selected frequency. The time is in the range between ns up to µs.

Low Power Mode LPM2,  DCO off
The crystal oscillator and the DC generator are still active during LPM2, and an
immediate start is possible. The start-up delay is limited to some gate delays.

Low Power Mode LPM1,  Frequency-lock-loop off
The crystal oscillator, the DC generator and the DCO are still active during LPM1. The
processor with all its peripheral modules is fully functional without any limitation. The
frequency is determined from the output value of the frequency integrator. This value,
with the characteristic of the DCO, determines the frequency of the MCLK signal that is
identical to the system frequency fSystem.
There is no start-up delay: the oscillator is already running. The loop control is activated
asynchronously and with a slight frequency variation, but it settles fast and aperiodically.



MSP430 Family Oscillator, System Clock Generator

7-9

7

7.4 System Clock Control Register

The system clock generator interacts with other processor parts via three general
module registers and the special function registers. The general module registers are
mapped into the lower peripheral file address range where all byte modules are located.
Three control lines for the operating states, SCG1, SCG0 and OscOff, are supplied from
the status register SR of the CPU.

7.4.1 General Module Registers

Two eight bit registers control the system clock generator. The user's software loads one
of the registers with the multiplication factor N. The other register holds control bits or
signals used for various operating modes. It should be accessed using byte instructions.

System Clock Frequency Control

7 0

rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1

M 2 2 2 2 2 2 26 5 4 1 0
052h

SCFQCTL
3 2

The content of register SCFQCTL controls the multiplication of the crystal's frequency.
The seven bits indicates a range of 3+1 to 127+1.

fSystem = (x*26 + x*25 + x*24 + x*23 + x*22 + x*21 + x*20 + 1) * fcrystal

The default value in SCFQCTL after PUC was active is 31, which results in a factor
of 32.
The range of the fSystem is theoretical and depends on the adjustable frequency range
of the DCO (see more information in electrical characteristics).

Note: Multiplication factor in SCG

The content of register SCFQCTL (26 to 20) controls the multiplication of the
crystal's frequency. The seven bits must be in the range of 3 to 127. Any value
below 3 results in unpredictable operation, but also any value than 127 will force
the MCLK frequency above the device specification.



Oscillator, System Clock Generator MSP430 Family

7-10

7

System Clock Frequency Integrator

7 0

7 0

rw-0 rw-0 rw-0

r r r r rw-0 rw-0

rw-0 rw-0 rw-0 rw-0 rw-0

0 0 0 2 21 0

2 2 2 2 2 2 2 29 78 6 5 4 3 2

050h

051h

SCFI0

SCFI1

FN_4 FN_2FN_3

rw-0 rw-0 rw-0

The output of the frequency integrator controls the DCO. This value can be read using
the appropriate address of SCFI1 and SCFI0. The digital representation is:

NDCO = (x* 29 + x*28 + x*27 + x*26 + x*25) + (1-M)*(x*24 + x*23 +  x*22 + x*21 +  x*20)

SCFI0, Bit 1...3: The three bits in the SC control register 0 define the nominal
frequency of the DCO.

FN_4 FN_3 FN_2 Frequency

0 0 0 fNOM
0 0 1 2 x fNOM
0 1 X

1 X X

3 x fNOM
4 x fNOM

7.4.2 Special function register bits, System Clock Generator related

Two bits in the SFR address range handle the system control interaction according to
the function implemented in the SCG. These three bits are:
• OscFault Interrupt Flag OFIFG (located in IFG1.1, initial state is unchanged)
• OscFault Interrupt Enable OFIE (located in IE1.1, initial state is reset).

The interrupt flag is part of a multiple source interrupt request. The same interrupt vector
is also used for the event at the,,  RST/NMI-pin when NMI function is selected. The
interrupt is defined to be non-maskable. Non-maskable implies that the general interrupt
enable bit GIE can not disable the interrupt request. Since the interrupt shares the same
interrupt vector and an oscillator fault is active after PUC, the interrupt flag is not
automatically reset.

Three different situations should be handled by the software:

• After PUC, a proper sequence should be programmed to identify or to set an oscillator
condition that prevents active level at OscFault signal, and therefore a permanently
set of OFIFG. The OFIFG should be reset by software.
PUC resets the OFIE bit and no interrupt is requested.



MSP430 Family Oscillator, System Clock Generator

7-11

7

• When an interrupt from the OscFault signal was requested and serviced, the interrupt
enable bit OFIE is reset automatically to disable further continuous interrupt requests
until proper response from the software conducts to a inactive OscFault signal. After
reaching the inactive state, the OFIE bit can be set again following the general rules
of module interrupts. An oscillator fault event is not affected by the general interrupt
enable bit GIE.

• The interrupt flag OFIFG can be used to identify the interrupt source at the beginning
of the interrupt service routine. The OFIFG is set independently of an additional NMI
event and is dominant.

Note: Interrupt flag OFIFG

The interrupt flag OFIFG remains set when an interrupt request has been
accepted and serviced. This is mandatory, because it is a multiple source
interrupt together with NMI interrupt and it indicates to the software interrupt
handle the event of an oscillator fault. Servicing first the OFIFG condition gives
this event priority over the NMI event.



Oscillator, System Clock Generator MSP430 Family

7-12

7

7.5 DCO Characteristic - typical

The digital controlled oscillator varies with temperature and supply voltage. Running the
frequency loop this is unimportant for the application, because the period of control is
identical with the period of the ACLK signal. With a 32,768Hz crystal, it is 30.5µs.

0

0.2

0.4

0.6

0.8

1

1.2

0 25 50 75 85 105 125

Temperature [    C]o Supply Voltage VCC [V]

f

f

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6

DCO

3.0

f

f
DCO

25  Co

Typical DCO Characteristics,  FN_4, FN_3, FN_2 are reset

DCO Tap

KHz

0
500

1000
1500
2000
2500
3000
3500
4000

0 1 2 3 4 5 6 7 8 9 10 1
1

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 7.5: DCO Characteristics

Note: DCO Taps

The five most significant bits in the System Clock Frequency Integrator register
SCFI1 are feed into the DCO. If the modulation bit M from the register SCFQCTL
is set, only the DCO taps are determining the system frequency.



MSP430 Family Digital I/O Configuration

8-1

8

8 Digital I/O Configuration

Topic Page

8.1 General Port P0 8-3

8.2 General Ports P1, P2 8-12

8.3 General Ports P3, P4 8-18

8.4 LCD Ports 8-22

8.5 LCD Port - Timer/Port Comparator 8-23



Digital I/O Configuration MSP430 Family

8-2

8



MSP430 Family Digital I/O Configuration

8-3

8

8.1 General Port P0

The general port P0 incorporates all the functions to individually select the function of
each pin and to use each signal as an interrupt source.
The six registers are used for the control of the Port's I/O pins.
The general module registers are mapped into the lower peripheral file address range
where all byte modules are located. The register should be accessed with byte
instructions, using absolute address mode.

MDB

8

8

8

6/2

8

6/2

P0.7 P0.0

Input Register P0IN

Output Register P0OUT

Direction Reg. P0DIR

Interrupt Edge Select
P0IES

R

R/W

R/W

R/W

R/W

R/W

MSB LSB

010h

011h

012h

014h

Interrupt Flags IFG1.2/3

Interrupt Flags P0IFG
013h

002h

Interrupt Enable IE1.2/3
000h

015h

Interrupt Enable
P0IE

Figure 8.1: Port P0 Configuration



Digital I/O Configuration MSP430 Family

8-4

8

8.1.1 Port P0 Control Registers

The Port P0 is connected to the processor core via the 8-bit MDB structure and MAB. It
should be accessed via byte instructions.

The six control registers give maximum flexibility of digital input/output to the application:
• All individual I/O bits are programmable independently:
• Any combination of input, output and interrupt condition is possible.
• Interrupt processing of external events is fully implemented for all eight bits of the

port P0.

The six registers are:

Register short form Register type Address Initial State

• Input register: P0IN read only   010h -----
• Output register: P0OUT read/write   011h unchanged
• Direction register: P0DIR read/write   012h reset
• Interrupt Flags: P0IFG read/write   013h reset
• Interrupt Edge Select: P0IES read/write   014h unchanged
• Interrupt Enable: P0IE read/write   015h reset

All these registers contain eight bits except the two LSBs in the interrupt flag register,
and the interrupt enable register. These two bits are included in the special function
register SFR. The registers should be accessed with byte instructions.

Input Register P0IN
The input register is a read-only register to scan the signals at the I/O pins. The direction
of the pin should be selected for input.

Note: Writing to read only register P0IN

Writing to this read-only register results in an increased current consumption as
long as the write is active.

Output Register P0OUT
The Output Register shows the information of the output buffer, an eight bit register that
contains the information output at the I/O pins if used as outputs. The output buffer can
be modified by all instructions that write to a destination. If read, the contents of the
output buffer are read independently of the direction. A direction change does not modify
the output buffer contents.

Direction Register P0DIR

This register contains eight independent bits that define the direction of the I/O pin. All
bits are reset by PUC:

Bit = 0: The I/O pin is switched to input direction
Bit = 1: The I/O pin is switched to output direction



MSP430 Family Digital I/O Configuration

8-5

8

Interrupt Flags P0IFG
This register contains six flags that contain information if an interrupt is pending or not-
according to the corresponding I/O pin:

P0IFG

rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0
013h

7 0

P0IFG.7 P0IFG.6 P0IFG.5 P0IFG.4 P0IFG.3 P0IFG.2

rw-0

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending due to a transition at the I/O pin.

Manipulation on P0OUT and P0DIR can also set bits of
P0IFG.

Writing a zero to an Interrupt Flag resets it.
The six flags are located in bit 7 to 2 corresponding to the pins P0.7 to P0.2. The
remaining interrupt flags of pin P0.1 and P0.0 are located in the SFRs.

Note: Interrupt Flags P0FLG.2...7

The Interrupt Flags P0FLG.2 to P0FLG.7 use only one interrupt vector: it is a
multiple source interrupt vector. The interrupt flags P0IFG.2 to P0IFG.7 are not
reset automatically when any interrupt from these events is served. The software
decides which event will be served and should reset the appropriate flag.

Any external interrupt event should be as long as 1.5 times MCLK or longer to
ensure that it is accepted and the corresponding interrupt flag is set.

Interrupt Edge Select P0IES
This register contains a bit for each I/O pin that selects which transition triggers the
interrupt flag. All eight bits corresponding to pin P0.7 to P0.0 are located in this register.
The bits have the following meaning:

Bit = 0: The interrupt flag is set with LO/HI transition
Bit = 1: The interrupt flag is set with HI/LO transition

Note: Change of P0IES bit(s)

Any change of P0IES bit(s) may result in setting the associated interrupt flags.

Interrupt Enable P0IE
This register contains a bit for six I/O pins to enable interrupt request on an interrupt
event. Two interrupt enable bits for P0.0 and P0.1 are located in special function register
IE1.2 and IE1.3. Six bits corresponding to pin P0.7 to P0.2 are located in the P0IE
register.



Digital I/O Configuration MSP430 Family

8-6

8

P0IE

rw-0 rw-0 rw-0 rw-0 rw-0 r0 r0
015h

7 0

P0IE.7 P0IE.6 P0IE.5 P0IE.4 P0IE.3 P0IE.2

rw-0

The bits have the following meaning:

Bit = 0: The interrupt request is disabled
Bit = 1: The interrupt request is enabled

Note: Port0 interrupt sensitivity

Only transitions, not static levels cause interrupts.

The interrupt routine must reset the multiple-use Interrupt Flags P0IFG.2...
P0IFG.7. The single source flags P0IFG.0 and P0IFG.1 are reset when they are
serviced.

If an Interrupt Flag is still set (because the transition occurred during the interrupt
routine) when the RETI instruction is executed, an interrupt occurs again after
RETI is completed. This ensures, that each transition is seen by the software.



MSP430 Family Digital I/O Configuration

8-7

8

8.1.2 Port P0 Schematic

Port P0, Bits P0.3 to P0.7
The pin logic of each individual signal of port P0 is built from five identically register bits -
 P0DIR, P0OUT, P0IFG, P0IE, P0IES - and one read-only input buffer - P0IN. The bits
three to seven are identically designed:

Output

P0DIR.x

P0.x

Input
MUX

P0IN.x

P0OUT.x

Pad Logic

Interrupt
Flag Edge

Select

Interrupt

P0IES.x

P0IFG.x

P0IE.xP0IRQ.x

Request

Interrupt

P0.27

PnIRQ.y

PnIRQ.z

:
:
:
:

Figure 8.2: Schematic of bits P0.7 to P0.3

The interrupt flag may be set by a relevant input condition, but also by the software.
Additionally, when the direction control bit or the interrupt edge select bit are modified a
trigger condition may occur.
The port P0 bits two to seven share one common interrupt vector. The interrupt flags are
not automatically reset after the P0.27 interrupt request was accepted. The individual
flags P0IFG.2 to P0IFG.7 should be reset by software preferably in the corresponding
interrupt service routine.



Digital I/O Configuration MSP430 Family

8-8

8

 Port P0, Bit P0.2
The bit two is slightly different from bits three to seven. The output signal can be
determined either by the port P0OUT.2 bit or by the 8bit Timer/Counter’s signal TXD.
Whenever output control register bit TXE is set TXD signal is selected to be the relevant
output signal and the pad logic is switched to the output, independent of the direction
control bit P0DIR.2:

Output

P0DIR.2

P0.2

Input
MUX

P0IN.2

P0OUT.2

Pad Logic

Interrupt
Flag

Edge
Select

Interrupt

P0IES.2

P0IFG.2

P0IE.2P0IRQ.2

Request

Interrupt

P0.27

P0IRQ.3

P0IRQ.7

:
:
:

TXE

TXD

:

MUX

Figure 8.3: Schematic of bit P0.2

The interrupt flag P0IFG.2 shares the interrupt vector with interrupt flags P0IFG.3 to
P0IFG.7.



MSP430 Family Digital I/O Configuration

8-9

8

Port P0, Bit P0.1
The bit one is slightly different from bits three to seven. The interrupt signal can be
selected to be sourced whether by the input signal at the pin P0.1 or by the 8bit
Timer/Counter’s signal Carry. Whenever the interrupt source control bit ISCTL in the 8bit
Timer/Counter control register TCCTL is set, the interrupt source is switched from the
P0.1 pin to the Carry signal from the counter in the 8bit Timer/Counter:

Output

P0DIR.1

P0.1

InputP0IN.1

P0OUT.1

Pad Logic

Interrupt
Flag

Edge
Select

Interrupt
P0IES.1

P0IFG.1

P0IE.1P0IRQ.1Request

Interrupt

P0.1

Source
Select

Interrupt

Carry

P0.1D

ISCTL

from 8bit T/C

IRQA

Figure 8.4: Schematic of bit P0.1

The interrupt flag P0IFG.1 is automatically reset when a P0IFG.1 interrupt request was
accepted (IRQA).



Digital I/O Configuration MSP430 Family

8-10

8

Port P0, Bit P0.0
The bit zero is identical to bits three to seven, but uses an individual interrupt vector:

Output

P0DIR.0

P0.0

Input
MUX

P0IN.0

P0OUT.0

Pad Logic

Interrupt
Flag Edge

Select

Interrupt

P0IES.0

P0IFG.0

P0IE.0P0IRQ.1Request

Interrupt

P0.0

IRQA

Figure 8.5: Schematic of bit P0.0

The interrupt flag P0IFG.0 is automatically reset when a P0IFG.0 interrupt request was
accepted (IRQA).



MSP430 Family Digital I/O Configuration

8-11

8

8.1.3 Port P0 interrupt control functions

Port P0 uses eight bits for interrupt flags, eight bits for interrupt enable, eight bits to
select the effective edge of an interrupt event, and three different interrupt vector
addresses.
The three interrupt vector addresses are assigned to:
• P0.0
• P0.1/RXD
• P0.2 to P0.7

Two port P0 signals P0.0 and P0.1/RXD are used for dedicated signal processing. Four
bits in the SFR address range and two bits in the port0 address frame handle the
interrupt events on P0.0 and P0.1/RXD :
• P0.0 Interrupt Flag P0IFG.0 (located in IFG1.2, initial state is reset)
• P0.1/RXD Interrupt Flag P0IFG.1 (located in IFG1.3, initial state is reset)
• P0.0 Interrupt Enable P0IE.0 (located in IE1.2, initial state is reset)
• P0.1/RXD Interrupt Enable P0IE.1 (located in IE1.3, initial state is reset)
• P0.0 Interrupt Edge Select (located in P0IES.0, initial state is reset)
• P0.1/RXD Interrupt Edge Select (located in P0IES.1, initial state is reset)

Both interrupt flags are single source interrupt flags and are automatically reset when
the processor system serves them. The enable bits and edge select bits remain
unchanged.

The interrupt control bits of the remaining six I/O signals P0.2 to P0.7 are located in the
I/O address frame. Each signal uses three bits that define reaction to interrupt events:
• interrupt flag, P0IFG.2 to P0IFG.7
• interrupt enable bit, P0IE.2 to P0IE.7
• interrupt edge select bit, P0IES.2 to P0IES.7

The interrupt flags P0IFG.2 to P0IFG.7 are part of a multiple source interrupt request.
Any interrupt event on one or more pins of P0.2 to P0.7 will request an interrupt when
two conditions are met: the appropriate individual bit P0IE.x (2 ≤ x ≤ 7) is set and the
general interrupt enable bit GIE is set. The six interrupt sources use the same interrupt
vector. Since the interrupts share the same interrupt vector, interrupt flags P0.2 to P0.7
are not automatically reset.

The software of the interrupt service routine handles the detection of the source, and
also resets the appropriate flag when it is serviced.

Note: Multiple Source interrupt flags P0IFG.2 to P0IFG.7

The interrupt flags P0IFG.2 to P0IFG.7 remain set when an interrupt request has
been accepted and serviced. This is mandatory, because it is a multiple source
interrupt. Each flag that was served should be reset within its interrupt service
routine.



Digital I/O Configuration MSP430 Family

8-12

8

8.2 General Ports P1, P2

The general port P1 and port P2 incorporates all the functions to individually select the
function of each pin and to use each signal as an interrupt source.
The seven registers are used to control the Port's I/O pins.
The general module registers are mapped into the lower peripheral file address range
where all byte modules are located. The register should be accessed with byte
instructions, using absolute address mode.

MDB

8

8

8

8

8

8

Pn.7 Pn.0

Input Register PnIN

Output Register PnOUT

Direction Reg. PnDIR

Interrupt Edge Select
PnIES

R

R/W

R/W

R/W

R/W

R/W

MSB LSB

n=1: 020h

n=1: 021h

n=1: 022h

n=1: 024h

Interrupt Flags PnIFG

n=1: 023h

n=1: 025h

Interrupt Enable
PnIE 8

R/W

n=1: 026h

Function Select
PnSEL

n=2: 028h

n=2: 029h

n=2: 02Ah

n=2: 02Bh

n=2: 02Ch

n=2: 02Dh

n=2: 02Eh

Figure 8.6: Port P1, Port P2 Configuration



MSP430 Family Digital I/O Configuration

8-13

8

8.2.1 Port P1, Port P2 Control Registers

The port P1 and port P2 are connected to the processor core via the 8-bit MDB structure
and MAB. They should be accessed via byte instructions.

The seven control registers give maximum flexibility of digital input/output to the
application:
• All individual I/O bits are programmable independently:
• Any combination of input, output and interrupt condition is possible.
• Interrupt processing of external events is fully implemented for all eight bits of the

port P1 and port P2.

The seven registers for port P1 and the seven registers for port P2 are:

Register short form Register type Address Initial State

• Input register: P1IN read only   020h -----
• Output register: P1OUT read/write   021h unchanged
• Direction register: P1DIR read/write   022h reset
• Interrupt Flags: P1IFG read/write   023h reset
• Interrupt Edge Select: P1IES read/write   024h unchanged
• Interrupt Enable: P1IE read/write   025h reset
• Function Select reg.: P1SEL read/write   026h reset

• Input register: P2IN read only   028h -----
• Output register: P2OUT read/write   029h unchanged
• Direction register: P2DIR read/write   02Ah reset
• Interrupt Flags: P2IFG read/write   02Bh reset
• Interrupt Edge Select: P2IES read/write   02Ch unchanged
• Interrupt Enable: P2IE read/write   02Dh reset
• Function Select reg.: P2SEL read/write   02Eh reset

All these registers contain eight bits. The registers should be accessed with byte
instructions and use absolute address mode.

Input Registers P1IN, P2IN
Both input registers are read-only registers to scan the signals at the I/O pins. The
direction of the pin should be selected for input.

Note: Writing to read only registers P1IN, P2IN

Writing to this read-only register results in an increased current consumption as
long as the write is active.



Digital I/O Configuration MSP430 Family

8-14

8

Output Registers P1OUT, P2OUT
Each output register shows the information of the output buffer, an eight bit register that
contains the information output at the I/O pins if used as outputs. The output buffer can
be modified by all instructions that write to a destination. If read, the contents of the
output buffer is read independently of the direction. A direction change does not modify
the output buffer contents.

Direction Registers P1DIR, P2DIR
Each register contains eight independent bits that define the direction of the I/O pin. All
bits are reset by PUC:

Bit = 0: The I/O pin is switched to input direction
Bit = 1: The I/O pin is switched to output direction

Interrupt Flags P1IFG, P2IFG
Each register contains eight flags that contain information if an interrupt is pending or
not - according to the corresponding I/O pin:

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending due to a transition at the I/O pin.

Manipulation on P1OUT and P1DIR as well as P2OUT and
P2DIR can also set bits of P1IFG or P2IFG.

Writing a zero to an Interrupt Flag resets it.

Note: Interrupt Flags P1FLG02...7, P2FLG02...7

Each group of the Interrupt Flags P1FLG.0 to P1FLG.7 and P2FLG.0 to P2FLG.7
use only one interrupt vector: both are multiple source interrupt vectors. The
interrupt flags P1IFG.0 to P1IFG.7 and P2FLG.0 to P2FLG.7 are not reset
automatically when any interrupt from these events is served. The software
decides which event will be served and should reset the appropriate flag.

Any external interrupt event should be as long as 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Interrupt Edge Select P1IES, P2IES
Each register contains a bit for e corresponding ach I/O pin that selects which transition
triggers the interrupt flag. All eight bits according to pin P1.0 to P1.7 and to pin P2.0 to
P2.7 are located in these registers. The bits have the following meaning:

Bit = 0: The interrupt flag is set with LO/HI transition
Bit = 1: The interrupt flag is set with HI/LO transition



MSP430 Family Digital I/O Configuration

8-15

8

Note: Change of P1IES, P2IES bit(s)

Changing P1IES, P2IES bit(s) may result in setting the associated interrupt flags: 
Bit PnIES.x PnIN.x PnIFG.x 
  0  >  1   0 unchanged
  0  >  1   1 may be set
  1  >  0   0 may be set
  1  >  0   1 unchanged

Interrupt Enable P1IE, P2IE
Each register contains a bit for all eight I/O pins to enable interrupt request on an
interrupt event. Each of the eight bits corresponding to pin P1.0 to P1.7 and P2.0 to P2.7
are located in the P1IE and P2IE registers.

The bits have the following meanings:

Bit = 0: The interrupt request is disabled
Bit = 1: The interrupt request is enabled

Note: Port P1, Port P2 interrupt sensitivity

Only transitions, not static levels, cause interrupts.

The interrupt routine must reset all Interrupt Flags, since they follow the multiple
interrupt bit scheme of the MSP430 family.

If an Interrupt Flag is still set (because the transition occurred during the interrupt
routine) when the RETI instruction is executed, an interrupt occurs again after
RETI is completed. This ensures, that each transition is seen by the software.

Function Select Registers P1SEL, P2SEL
Each register contains eight independent bits that define the functions that access the
I/O pin. The port function or a defined module function puts data to the pin, or gets data
from the pin. All bits are reset by PUC:

Bit = 0: Port function - output or input data are defined by the port
module

Bit = 1: Module function - output or input data are defined by a
module not by the port module

Note: Function Select with P1SEL, P2SEL

The interrupt edge select circuitry is disabled if control bit PnSEL.x is set. The
input signal will not alter the interrupt flag.
The interrupt edge select and the interrupt flag operates with their full
performance when the function select control bit PnSEL is reset.



Digital I/O Configuration MSP430 Family

8-16

8

8.2.2 Port P1, Port P2 Schematic

The pin logic of each individual signal of port P1 and port P2 is identical. Each bit can be
read and written.

Pn.x

PnIN.x

Module X IN

PnOUT.x
Pad Logic

PnDIR.x

PnSEL.x

n = 1 for Port P1 and 2 for Port P2

Module X OUT

EN

A

Y

Interrupt
Flag Edge

Select

Interrupt

PnSEL.x

PnIES.x

PnIFG.x

PnIE.xPnIRQ.x

Direction Control
from Module

Request

Interrupt

Pn.07

PnIRQ.y

PnIRQ.z

:
:
:
:
:

Output
MUX

Output
MUX

Figure 8.7: Schematic of one bit in Port P1, P2

Module X IN function

The input signal fed to a peripheral module follows the input when the module’s function
is selected - PnSEL.x = 1. It will be halted continuously at the last level of the input that
was passed to the module before the control bit PnSEL.x was reset. Setting the control
bit from reset state can alter the signal to the module, when the halted level and the
actual level at the input are different.



MSP430 Family Digital I/O Configuration

8-17

8

8.2.3 Port P1, P2 interrupt control functions

Port P1 and port P2 use eight bits for interrupt flags, eight bits for interrupt enable, eight
bits to select the effective edge of an interrupt event and one interrupt vector address for
port P1 and one interrupt vector address for port P2.

All of the interrupt control bits are located in the I/O address frame. Each signal uses
three bits that define reaction to interrupt events:
• interrupt flag, P1IFG.0 to P1IFG.7 and P2IFG.0 to P2IFG.7
• interrupt enable bit, P1IE.0 to P1IE.7 and P2IE.0 to P2IE.7
• interrupt edge select bit, P1IES.0 to P1IES.7 and P2IES.0 to P2IES.7

The interrupt flags P1IFG.0 to P1IFG.7 and P2IFG.0 to P2IFG.7 are part of a multiple
source interrupt request. Any interrupt event on one or more pins P1.0 to P1.7 or P2.0 to
P2.7 will request an interrupt when two conditions are met, the appropriate individual bit
PnIE.x (0 ≤ x ≤ 7) is set, and the general interrupt enable bit GIE is set. The eight
interrupt sources use the same interrupt vector. Since the interrupt shares the same
interrupt vector, none of the interrupt flags P1.0 to P1.7 or P2.0 to P2.7 is reset
automatically.

The software of the interrupt service routine must handle the detection of the source and
also resets the appropriate flag when it is serviced.

Note: Multiple Source interrupt flags P1IFG.0 to P1IFG.7, P2IFG.0 to 
P2IFG.7

The interrupt flags P1IFG.0 to P1IFG.7 and P2IFG.0 to P2IFG.7 remain set when
an interrupt request has been accepted and serviced. This is mandatory because
it is a multiple source interrupt. Each flag that was served should be reset within
its interrupt service routine.



Digital I/O Configuration MSP430 Family

8-18

8

8.3 General Ports P3, P4

The general port P3 and port P4 are identical. They incorporate all the functions to
individually select the function of each pin. Each pin can be selected to operate with the
port function, or to operate under control of another internal peripheral module.
Four registers control each of the two ports P3 and P4.
The general module registers are mapped into the lower peripheral file address range
where all byte modules are located. The register should be accessed with byte
instructions, using absolute address mode.

MDB

8

8

8

8

Pn.7 Pn.0

Input Register PnIN

Output Register PnOUT

Direction Reg. PnDIR

Function Select Register
PnSEL

R

R/W

R/W

R/W

MSB LSB

n=3: 018h

n=3: 019h

n=3: 01Ah

n=3: 01Bh

n=4: 01Ch

n=4: 01Dh

n=4: 01Eh

n=4: 01Fh

Figure 8.8: Port P3, Port P4 Configuration



MSP430 Family Digital I/O Configuration

8-19

8

8.3.1 Port P3, Port P4 Control Registers

The port P3 and port P4 are connected to the processor core via the 8-bit MDB structure
and MAB. They should be accessed via byte instructions using absolute address mode.

The four control registers of each port give maximum flexibility of digital input/output to
the application:
• All individual I/O bits are programmable independently:
• Any combination of input is possible.
• Any combination of port or module function is possible.

The four registers for each port are:

Register short form Register type Address Initial State

• Input register: P3IN read only   018h -----
• Output register: P3OUT read/write   019h unchanged
• Direction register: P3DIR read/write   01Ah reset
• Port Select register: P3SEL read/write   01Bh reset

• Input register: P4IN read only   01Ch -----
• Output register: P4OUT read/write   01Dh unchanged
• Direction register: P4DIR read/write   01Eh reset
• Port Select register: P4SEL read/write   01Fh reset

All these registers contain eight bits and should be accessed with byte instructions.

Input Register P3IN, P4IN
The input registers are read-only registers to scan the signals at the I/O pins. The
direction of the pin and the port function should be selected for input

Note: Writing to read only register P3IN, P4IN

Writing to this read only registers results in an increased current consumption, as
long as the write is active.

Output Registers P3OUT, P4OUT
The output registers P3OUT and P4OUT show the information of the output buffer, each
an eight bit register that contains the output information at the I/O pins if used as
outputs. The output buffer can be modified by all instructions that write to a destination.
If read, the contents of the output buffer are read independently of the direction. A
direction change does not modify the output buffer contents.

Direction Registers P3DIR, P4DIR
Each register contains eight independent bits that define the direction of the I/O pin. All
bits are reset by PUC:

Bit = 0: The I/O pin is switched to input direction
Bit = 1: The I/O pin is switched to output direction



Digital I/O Configuration MSP430 Family

8-20

8

Function Select Register P3SEL, P4SEL
Each register contains eight independent bits that define the functions that access the
I/O pin. The port function or a defined module function puts data to the pin, or gets data
from the pin. All bits are reset by PUC:

Bit = 0: Port function - output or input data are defined by the port
module

Bit = 1: Module function - output or input data are defined by a
module not by the port module

8.3.2 Port P3, Port P4 Schematic

The pin logic of each individual signal of port P3 and port P4 is defined in the specific
device configuration. In these device specifications, the function - purely digital port or
port function shared with module functions - are defined.
Pins which are used only with digital port function are exclusively controlled by the bits in
the corresponding four port registers.
Pins which are used with digital port and module function are controlled by
• the port control bits,  when the corresponding select bit PnSEL.x is reset
• the module control bits,  when the corresponding select bit PnSEL.x is set

All eight port signal can be configured by the hardware individually to be:
• port pin only
• module function pin only
• software configurable for port or module function

The specific realization is described in the device data sheet.

n = 3 for Port P3 and 4 for Port P4

Pn.x

PnIN.x

Module X IN

PnOUT.x
Pad Logic

PnDIR.x

PnSEL.x

Module X OUT

EN

A

Y

Direction Control
from Module

Output
MUX

Output
MUX

Figure 8.9: Schematic of bits P3.x/P4.x



MSP430 Family Digital I/O Configuration

8-21

8

Module XIN function

The input signal fed to a peripheral module follows the input when the module’s function
is selected - PnSEL.x = 1. It will be halted continuously at the last level of the input that
was passed to the module before the control bit PnSEL.x was reset. Setting the control
bit from reset state can alter the signal to the module when halted level and actual level
at the input are different.



Digital I/O Configuration MSP430 Family

8-22

8

8.4 LCD Ports

The LCD ports can be selected either to drive a liquid crystal display, or to act as digital
outputs driving static output signals. The control of a liquid crystal display uses common
and segment output stages to drive the analog signals needed for multiplex rates of
2Mux and higher.

LCD outputs

The LCD outputs use transmission gates to transfer the analog voltage to the output pin,
when they are used to drive liquid crystal displays. Groups of LCD outputs can be
configured by software to operate as digital outputs.

Analog levels

VD

VC COM0

COM3

:
:

Control COM0 ... 3

Seg1

Control

VB

VA

S2/O2

Sn/On

:
:VB

VA

Segment/COM0 ... 3

Data
(LCD RAM,

Control
Segment/COM0 ... 3

 bit0 to bit4)

(LCDM5, 6, 7)

Seg2

Segn

:
:

Out2

Outn

:
:

Seg0

Note: The signals VA, VB, VC and VD are coming from the LCD's analog voltage generator

Figure 8.10: Schematic of LCD

Three bits in the LCD control register LCDM5, LCDM6 and LCDM7 control the function
of these groups of signals. For more information on control of these outputs, see LCD
description.



MSP430 Family Digital I/O Configuration

8-23

8

8.5 LCD Port - Timer/Port Comparator

The comparator associated with the Timer/Port module is shared typically with one
segment line. The segment line function is selected for this pin after PUC signal was
active. The comparator input is selected when the CPON bit - located in the Timer/Port
module - is set the first time. It remains set as long as it is not reset by PUC.

PUC

CPON S

R

Vcc
Vcc/4CMP

 Timer/Port Module - schematic detail

 LCD Module

Sxx/Oxx

CPON

1

1

0

0

1

Sxx

CIN

CPON

+
-

Figure 8.11: Schematic of LCD pin - Timer/Port Comparator



Digital I/O Configuration MSP430 Family

8-24

8



MSP430 Family Universal Timer / Port Module

9-1

9

9 Universal Timer/Port Module

Topic Page

9.1 Timer/Port Module Operation 9-4

9.2 Timer/Port Registers 9-6

9.3 Timer/Port Special Function bits 9-10

9.4 Timer/Port in ADC Application 9-11



Universal Timer / Port Module MSP430 Family

9-2

9



MSP430 Family Universal Timer / Port Module

9-3

9

The universal Timer/Port Module supports several major system functions:
• Up to six independent outputs
• Two 8-bit counters, cascadeable for 16-bit mode
• Precision comparator for A/D conversion of slope converter type

TPIN.5

Enable

Control
Set_EN1FG

EN1

RC1

TPSSEL0

Set_RC1FGB16

TPIN.5

MCLK

ACLK
EN2

CLK2

CLK1
8bit Counter

TPCNT1

RC2

8bit Counter
TPCNT2

r/w

CIN
ENB ENA

TPD.0

TPE.0

TPD.1

TPE.1

TPD.2

TPE.2

TPD.3

TPE.3

TPD.4

TPE.4

TPD.5

TPE.5

Data Register
TPD

Data Enable Register
TPE

Control Register
TPCTL

r/w

Set_RC2FG

TPSSEL3 TPSSEL2

TPD.0TPD.5

TPE.0TPE.5

EN1
ENB

TPSSEL

B16

ENA
0

3 2

1 EN1FG

CPON

RC2FG
RC1FG

TP.0

TP.1

TP.5

TP.3

TP.4

TP.2

TPIN.5

TPSSEL

0

1

2

3

CMP

MCLK

ACLK

TPSSEL1 TPSSEL0

0

1

2

3

CMP

+
-

Vcc/4

Sxx

0

1

CPON

Figure 9.1: Timer/Port configuration



Universal Timer / Port Module MSP430 Family

9-4

9

9.1 Timer/Port Module Operation

The Timer/Port Module can be configured through the bits in the control register
TPCNTL to operate in different ways.

9.1.1 Timer/Port Counter TPCNT1, 8-bit Operation

The counter TPCNT1 can be read and written with appropriate instructions. The read
access to the timer's data can be asynchronous to the clock source when CMP or ACLK
is selected. A majority vote from 2 of 3 samples taken by software will ensure that the
data read are correct.

When the clock source is MCLK the data read are correct. Since MCLK is the same
frequency as the instructions which are clocked, the data read is only a sample of the
status of the counter and the counter is incremented continuously while EN1 is set.

The counter can be written at any time. After the write cycle is performed a re-read of
data from the counter can be different, if clocks are applied between the write and read
access.

Three different clock sources can count-up the counter: MCLK, ACLK or CMP.

The counter is incremented with each positive edge at the clock input when the enable
input EN1 of the counter is set. The counter is enabled when one or both signals ENA
and ENB are set. With system reset, both enable bits are reset and the counter function
is disabled. Resetting both enable bits will freeze the present counter data.

The ripple carry signal RC1 is high, as long as the counter data is 0FFh. The negative
edge of the ripple carry signal RC1 sets the RC1FG bit in the register TPCTL.

The flag RC1FG is set when the counter TPCNT1 rolls from 0FFh to 0. The flag EN1FG
is set when EN1 is switched to disable, but not when ENA or ENB is the source of
disable. An interrupt service is requested when the enable bit TPIE is set and one of the
flags RC1FG, RC2FG or EN1FG is set. The flags RC1FG, RC2FG and EN1FG should
be reset by software.

9.1.2 Timer/Port Counter TPCNT2, 8-bit operation

The counter's TPCNT2 operation is different from the counter's TPCNT1 operation by
the source of the enable signal and clock signals. The counter is always enabled with 8-
bit operation selected. Three different clock sources can count-up the counter: MCLK,
ACLK or TPIN.5 .

The ripple carry signal RC2 is high as long as the counter data is 0FFh. The negative
edge of the ripple carry signal RC2 sets the RC2FG bit in the register TPCTL.

The interrupt flag RC2FG is set when the counter TPCNT2 rolls from 0FFh to 0.



MSP430 Family Universal Timer / Port Module

9-5

9

9.1.3 Timer/Port Counter , 16-bit operation

The 8-bit counter TPCNT1 and the 8-bit counter TPCNT2 can be cascaded to form a
16-bit counter. The bit B16 in the control register is set for this operation.

Any read or write access to the counters remains a byte access. The data of the counter
TPCNT1 and TPCNT2 are read or written sequentially. This needs special considera-
tions if the access is done during counter operation.

The enable signal of the counter TPCNT1 is the enable of the 16-bit counter and the
clock source of TPCNT2 is the same as for the counter TPCNT1;  it is selected only by
TPSSEL0 and TPSSEL1.  The source select signals TPSSEL2 and TPSEL3 are “don't
care”.

TPIN.5

Enable

Control

EN1

EN1 RC1
TPSSEL0

EN2

CLK2CLK
8bit Counter

TPCNT1
RC2

8bit Counter
TPCNT2

r/w

CIN ENBENA

r/w

Set_RC2FGCMP

MCLK

ACLK

TPSSEL1 TPSSEL0

0

1

2

3

CMP

+
-Vcc/4

Sxx

0

1

CPON

Figure 9.2: Timer/Port counter, 16-bit operation

The four signals ENA, ENB, TPSSEL0 and TPSSEL1 control the operation of the
cascaded counters, the count enable and the counter's clock source:



Universal Timer / Port Module MSP430 Family

9-6

9

TPSSel1 TPSSel0ENAENB EN1 CLK1

0
10

0

0
0
0

0
0
0

0
0

0

X

0

0

X

1
1

1
1
1

1

1
1
1

1
1
1

1

1

1
1

1

1

1
1
1

1

0
0
0

0
0

0
00

0

0
0

0

0

0

0

CMP
ACLK
MCLK

CMP
ACLK
MCLK

CMP
ACLK
MCLK

CMP
ACLK
MCLK

TPIN.5
TPIN.5

TPIN.5
TPIN.5

1 10 1 MCLK

1 1 1 1 MCLK

CMP

CMP
CMP

CMP

The 16-bit counter can therefore be halted or counted-up unconditionally, with the signal
applied to pin CIN, Sxx or with one of the three clocks:  ACLK, MCLK or CMP.

The application of TPIN.5, TPIN.5 inverted, CMP or CMP inverted signal to the counter
enable input EN1 the 16-bit counter will be incremented with each ACLK or MCLK. This
feature is used to measure the time period of signals applied to pin CMP or TPIN.5.

The ripple carry signal RC2 is set as long as the counter data is 0FFFFh.

The flag RC2FG is set when the counter rolls from 0FFFFh to '0'. The flag EN1FG is set
when the EN1 is switched to disable. The source of enable EN1 is TPIN.5 or CMP. It is
not set  when EN1 is switched to disable via software using ENA and ENB.

9.2 Timer/Port Registers

The Timer/Port module hardware is byte structured and should be accessed by byte
processing instructions (suffix 'B').

Register short form Register type Address Initial state

• TP control register: TPCTL Type of read/write   04Bh Reset
• TP Counter 1: TPCNT1 Type of read/write   04Ch unchanged
• TP Counter 2: TPCNT2 Type of read/write   04Dh unchanged
• TP O/P Data register: TPD Type of read/write   04Eh Reset
• TP Data enable register: TPE Type of read/write   04Fh Reset

Timer/Port Control register
The information stored in the control register determines the operation of the Timer/Port
module.



MSP430 Family Universal Timer / Port Module

9-7

9

TPCTL

rw-0 rw-0 rw-0 rw-0 r-0 rw-0 rw-0 rw-0

ENB ENA EN104Bh

7 0

TPSSEL
1

TPSSEL
0 EN1FGRC1FGRC2FG

Figure 9.3: Timer/Port Control Register

Bit 0: The enable flag EN1FG is set with the negative edge of enable signal EN1
of counter TPCNT1, if the enable signal came from CMP or TPIN.5 pin. This
event sets the EN1FG bit and the software should reset it. Otherwise, it will
remain set.
The EN1FG bit can be used during the Timer/Port interrupt service routine
to decide if the interrupt event was from enable EN1 or from a ripple/carry
RC that is set when a counter rolls from 0FFh to 0h.

Bit 1: The bit RC1FG indicates that the counter TPCNT1 has rolled from
0FFh to 0h (overflow condition). This event sets the RC1FG bit, and the
software should reset it. Otherwise, it will remain set.
It is used in the Timer/Port Interrupt Service routine to identify the source of
an interrupt event.

Bit 2: The bit RC2FG indicates that the counter TPCNT2 has rolled from 0ffh to 0h
(overflow condition). This event sets the RC2FG bit, and the software should
reset it. Otherwise, it will remain set.
It is used in the Timer/Port Interrupt service routine to identify the source of
an interrupt event.

Bit 3, 4, 5: The enable signal EN1 of the counter TPCNT1 can be read. The level or the
signal of the bit EN1 is defined with control signals ENA, ENB, TPSSEL0.

TPSSel0ENAENB EN1

0

0

0 X

0

X

1

1

1

1

1

1

1

1

1

1

0

0

0

0

TPIN.5

TPIN.5

CMP

CMP

Bit 7, 6: The Timer/Port clock source select bits TPSSEL0 and TPSSEL1 control the
multiplexer to supply 1 of 3 clock sources to the counter TPCNT1.



Universal Timer / Port Module MSP430 Family

9-8

9

TPSSel0 CLK1

0

0

0

X1

1 ACLK

CMP

MCLK

TPSSel1

Timer/Port counter TPCNT1 and TPCNT2

Both counters are 8-bit, and any read or write access should be done with byte
instructions.

TPCNT1

rw rw rwrw rw rw rwrw
04Ch

7 0

2
7

2
5

2
4

2
3

2
2

2
6

2
0

2
1

TPCNT2

rw rw rwrw rw rw rwrw
04Dh

7 0

2
7

2
5

2
4

2
3

2
2

2
6

2
0

2
1

Figure 9.4: Timer/Port Counter Registers

Both counters can be read and written independently. Any reset of a counter is done
using the CLEAR instruction.

Timer/Port Data Register

The Data Register holds the value of six outputs and two control bits of the comparator.

TPD

rw-0 rw-0 rw-0rw-0 rw-0 rw-0 rw-0rw-0
04Eh

7 0

B16 TPD.5CPON TPD.4 TPD.3 TPD.2 TPD.1 TPD.0

Figure 9.5: Timer/Port Data Register

Bit 0 ... 5: The bits TPD.0 to TPD.5 hold the data for the output pins TP.0 to TP.5. The
digital signals will be applied to these pins when the 3-state output is
enabled by TPE.0 to TPE.5 . They are reset whenever a system reset PUC
happens .
The signal at TP.5 is used internally in the module and can be read via the
enable bit EN1 located in the control register TPCTL.

Bit 6: The comparator CPON bit switches on the supply of the comparator. It is
used to save current during its reset state. Whenever system reset PUC



MSP430 Family Universal Timer / Port Module

9-9

9

becomes active, the comparator on bit CPON is reset and the comparator is
inactive.

Bit 7: The control bit B16 selects the operation of the two counters TPCNT1 and
TPCNT2. They can operate as two independent 8-bit counters or as one 16-
bit counter. The access is always in byte mode. In the 16-bit mode, any read
or write access is done separately to counter TPCNT1 and counter
TPCNT2.
B16 = 0: Two 8-bit counter mode selected.
B16 = 1: One 16-bit counter with TPCNT1 for low byte and TPCNT2 for

high byte. The counter TPCNT2 increments its data when the
counter TPCNT1 rolls from 0FFh to 0h.

Timer/Port Enable Register

The Timer/Port Enable Register holds the control value of six outputs and two bits
indicating counter overflow.

TPE

rw-1 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
04Fh

7 0

TPE.5 TPE.4 TPE.3 TPE.2 TPE.0TPE.1
TPSSEL

3
TPSSEL

2

Figure 9.6: Timer/Port Enable Register

Bits 0 ... 5: The bits TPE.0 to TPE.5 hold the enable control (3-state) signals of the out-
puts TP.0 to TP.5. They are reset whenever a system reset PUC happens
and the outputs are high-impedance.

Bit 6, 7: The Timer/Port clock source select bits TPSSEL2 and TPSSEL3 control the
multiplexer to supply 1 of 4 clock sources to the counter TPCNT2. The
control bit B16 should be reset. When the control bit B16 is set, TPSSEL2/3
are “don't care” and the clock source of counter TPCNT2 is the same as of
the counter TPCNT1.

TPSSel2B16 CLK2

0

0

0 0

1

1

0

1

0

0

X

1

ACLK

TPIN.5

1

0

X

‘0’ or VSS

MCLK

TPSSel3

CLK1



Universal Timer / Port Module MSP430 Family

9-10

9

9.3 Timer/Port Special Function bits

The Timer/Port module covers one interrupt vector, multiple source interrupt flags (not
located in the SFR) and one interrupt enable bit.

The Timer/Port interrupt enable TPIE is located in IE.2 register. Initial state is reset.

The multiple source interrupt flags RC1FG, RC2FG and EN1FG are located in the
register TPCTL. Their initial state is reset.

The interrupt flags RC1FG, RC2FG and EN1FG are not reset automatically by hardware
when the  interrupt request is served. The flag EN1FG is set with the negative edge of
the counter enable signal EN1 and indicates that the counter was halted. It is not set if
software toggles from enable to disable of TPCNT1 by using ENA and ENB control
signals.

D QENB

EN1

D QB16

RC1

D Q'High'

RC2

TPIE
Request_Interrupt_Service

Figure 9.7: Timer/Port Interrupt Scheme

When a Timer/Port interrupt is asserted, the interrupt service routine should consider the
different interrupt sources and decide how to proceed. When the 8-bit counter mode is
selected, three interrupt sources can request an interrupt service: the negative edge of
EN1 signal, an overflow from counter TPCNT1 (RC1 signal), or an overflow from counter
TPCNT2 (RC2 signal). In the 16-bit counter mode (B16 is set) two sources can request
an interrupt service: the negative edge of EN1 signal, and an overflow from counter
TPCNT2.

B16

0

1

RC2 RC1 EN1

OR OR

OR ORX



MSP430 Family Universal Timer / Port Module

9-11

9

Figure 9.8: Conditions for Timer/Port Interrupt request

The interrupt request bits should be reset during the interrupt service routine. If this is
not done, another interrupt is requested immediately after the GIE is set or the RETI
instruction is executed. The Timer/Port interrupt enable bit TPIE is reset with PUC.
When the TPIE bit is reset, no interrupt request is done. When the TPIE bit and the
general interrupt enable bit GIE are set, the System/CPU will serve the interrupt if no
PUC or NMI is active.

9.4 Timer/Port in ADC Application

The Timer/Port peripheral incorporates all functions to support an A/D converter function
for  resistive or capacitive sensors.

For temperature measurement the most popular sensor elements are resistors that have
positive or negative temperature coefficients. Silicon sensors, NTC resistors and
platinum sensors are such sensor types.

9.4.1 Principle of conversion, R/D

The conversion of a resistor value to a digital representation is done by measuring the
time that is needed to discharge a capacitor. This capacitor is charged-up before the
discharge phase.

Vc

Vref

Phase I: Charge-Up Phase II:

Discharge C

t

VcRC

Rx

t

VCC
VCC

Figure 9.9: Charge-Discharge timing of RC



Universal Timer / Port Module MSP430 Family

9-12

9

During the discharge of the capacitor down to the reference voltage Vref, the time of this
period is measured using a voltage comparator and a counter. The counter is
incremented continuously as long as the voltage level at the capacitor C is above the
reference level Vref.  The increment of the counter is possible because the comparator
output is used to enable the counter's operation.



MSP430 Family Universal Timer / Port Module

9-13

9

The formula for this time measurement principle is

t - R * C * ln
Vref
Vcc

t N * t

N * t = - R * C * ln
Vref
Vcc

N - R C f * ln
Vref
Vcc

Clock

Clock

Clock

=

=

=

The value of C, fClock and Vref/VCC should be known to determine the value of resistor
R. Using a second conversion with a well defined and stable reference resistor, the
sensor to be measured can be determined by:

N
N

- R * C * ln
Vref
Vcc

- R * C * ln
Vref
Vcc

N
N

R
R

R R
N
N

meas

ref

meas

ref

meas

ref

meas

ref

meas ref
meas

ref

=

=

= *

This assumes that the circuit uses the same capacitor, and that both voltages and the
clock period are constant during both conversions.

Vc

Vref

Phase I: Phase II:

Discharge C

t

Charge-Up

Phase III: Phase IV:

Discharge C

t

Charge-Up

ref meas

Rmeas

Rref

t

VcC

Rx

VCC
VCC

Figure 9.10: Charge-Discharge timing during R/D conversions using Rref and Rmeas



Universal Timer / Port Module MSP430 Family

9-14

9

The capacitior C is charged through any resistor, Rx, up to VCC during Phase I and
Phase III. It is discharged via Rref or Rmeas. The current is then limited by the
resistor(s). If only the resistor Rref used, the time for charging the capacitor is well
defined.

VcC

R measref R CPON
CIN

VCCVCC VSSVSS

CMP

+
-Vcc/4

Sxx

0

1

Figure 9.11: Principle Conversion Scheme

The capacitor C is discharged while one of the resistors is connected to Vss. All
parasitics of the discharge current path will influence the time to discharge the capacitor
C down to Vref.



MSP430 Family Universal Timer / Port Module

9-15

9

9.4.2 Conversion with Resolution of >8 bit

The conversion is demonstrated using the comparator, the counters in 16-bit mode and
the digital outputs.

Enable

Control

EN1 RC1
CLK

TPCNT1

ENB ENA

r/w

TPSSEL0

EN1
EN1 RC2

CLK

TPCNT2

r/w

MCLK

RC2

Set_
Interrupt_
Flag

TPD.0

TPE.0

TPD.1

TPE.1

TPD.2

TPE.2

TPD.3

TPE.3

MSP430

Rr2

Rm1

Rm2

C

CIN

TPD.0

TPD.1

TPD.2

TPD.3

CMP0

CPON

Rr1

Figure 9.12: ADC Application example

The external components in this application are two reference resistors, Rr1 and Rr2,
and two sensor resistors to be measured, Rm1 and Rm2.

The internal configuration is selected via the control register TPCTL to meet the circuit
function of the application example. The schematic is reduced to the active connections
and block. The control register TPCTL is loaded with 9Eh which means that bits B16,
TPSSEL1, TPSSEL0, ENB and ENA are set.

The capacitor C is charged through Rr1 and/or Rr2 up to VCC.



Universal Timer / Port Module MSP430 Family

9-16

9

The time of the four discharge phases is measured:

t  = N  * t  = - R  * C * ln 
V

t  = N  * t  = - R  * C * ln 
V

t  = N  * t  = - R  * C * ln 
V

t  = N  * t  = - R  * C * ln 
V

r1 r1 MCLK r1
ref

r2 r2 MCLK r2
ref

m1 m1 MCLK m1
ref

m2 m2 MCLK m2
ref

V

V

V

V

CC

CC

CC

CC

and the following formula is used to determine the resistors Rm1 and Rm2:

R  - Rr1 r2

R R
N N
N N

R R R R
N N
N N

R R R R
N N
N N

R R R R
N N
N N

mx r

r r

mx r

mx r r r
mx r

r r

m r r r
m r

r r

m r r r
m r

r r

-
=

-
-

= + -
-
-

= + -
-
-

= + -
-
-

2

1 2

2

2 1 2
2

1 2

1 2 1 2
1 2

1 2

2 2 1 2
2 2

1 2

( )*

( )*

( )*



MSP430 Family Universal Timer / Port Module

9-17

9



MSP430 Family Timers

10-1

10

10 Timers

Topic Page

10.1 Basic Timer1 10-3

10.2 8-bit Interval Timer/Counter 10-9

10.3 The Watchdog Timer 10-29

10.4 8-bit PWM Timer 10-35



Timers MSP430 Family

10-2

10



MSP430 Family Timers

10-3

10

10.1 Basic Timer1

The intention of the basic timer operation is to support the software and various
peripheral modules with a low power consumption, low frequency reference.

The following are examples of software functions controlled by the stability of the crystal:
• real time clock RTC
• debouncing keys, keyboard
• software time incremental feature**

EN1
CLK1

Q4 Q5 Q6 Q7

f LCD

DIV
Hold

ACLK

EN2

CLK2
Q4 Q5 Q6 Q7Q3Q2Q1Q0

Set_Int._Flag

MCLK

DIVSSEL

CONTROL REGISTER

BTCTL

FRFQ
DIVSSEL

ACLK:256

IP2
IP1
IP0

0 1 2 3

FRFQ1
FRFQ0

0 1 2 3 4 5 6 7

0

1

2

3

BTCNT1

BTCNT2
Hold

Hold
2 1 0
IP IP IP

1 0

Figure 10.1: Basic Timer Configuration

The Basic Timer1 supplies other peripheral modules with low frequency control signals.
The software can access both 8-bit counters.

The control register BTCTL holds the flags to control or select the different operational
functions. The register BTCTL, the 8-bit counter BTCNT1 and the 8-bit counter BTCNT2
are under full control of the software. When supply voltage is applied, a reset of the
device or a watchdog overflow or any other operational condition occurs, and all bits in
the register hold an undefined or unchanged status. The user's software usually
configures the operational conditions of the Basic Timer1 during initialization.



Timers MSP430 Family

10-4

10

10.1.1 Basic Timer1 Register

The Basic Timer1 module hardware is byte structured, and should be accessed by byte
processing instructions (suffix .B).

Register short form Register type Address Initial state

• BT1 control register BTCTL Type of read/write   040h unchanged
• BT counter 1 BTCNT1 Type of read/write   046h unchanged
• BT counter 2 BTCNT2 Type of read/write   047h unchanged

Basic Timer1 Control Register

The information stored in the control register determines the operation of the basic timer.
The status of the different bits selects the frequency source, the interrupt frequency and
the framing frequency of the LCD control circuitry.

rw rw rw rw rw rw rw rw

SSEL DIV FRFQ1 IP2 IP1 IP0040h

7 0

FRFQ0
BTCTL

Hold

Figure 10.2: Basic Timer1 Register

Bit 0 ... 2: The three least significant bits IP2..0 determine the interrupt interval
time. It is  the interval of consecutive settings of interrupt request flag
BTIFG.

Bit 3 ... 4: The two bits FRFQ1 and FRFQ0 select the frequency fLCD. Devices
with LCD peripheral on-chip use this frequency to generate the timing of
the common and select lines.

Bit 5: see Bit 7.

Bit 6: The Hold bit stops the counters operation.
The BTCNT2 is held, if Hold bit is set.
The BTCNT1 is held, if Hold bit and DIV bit are set.

Bit 7: The SSEL bit and DIV bit select the input frequency source of BTCNT2.

SSEL DIV CLK2

0 0 ACLK

0 1 ACLK/256

1 0 MCLK

1 1 ACLK/256



MSP430 Family Timers

10-5

10

Interrupt 

0 0

0 1

1

1

0

1

fLCD = f : 32

fLCD = f : 64

fLCD = f : 128

fLCD = f : 256

rw rw rw rw rw rw rw rw

SSEL DIV FRFQ1 IP2 IP1 IP0040h

7 0

FRFQ0

0 0 0 f : 2

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1

1

1

1

0

1

f : 4

f : 8

f : 16

f : 32

f : 64

f : 128

f : 256

frequency 

CLK2

CLK2

CLK2

CLK2

CLK2

CLK2

CLK2

CLK2

ACLK

ACLK

ACLK

ACLK

BTCTL
Hold

Figure 10.3: Basic Timer1 Register Function

Basic Timer1 Counter BTCNT1

The Basic Timer Counter BTCNT1 divides the auxiliary clock ACLK. The frame
frequency for LCD-Drive is selected from four outputs of the counter FFs. The output of
the most significant FF can be used for the clock input to the second counter BTCNT2.
The output of the counter Q0...7 can be read and the counter Q0..7 can be written by
software.

2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

7 0

rw rw rw rw rw rw rw rw

BTCNT1
046h



Timers MSP430 Family

10-6

10

Basic Timer1, Counter BTCNT2

The Basic Timer Counter BTCNT2 divides the input clock frequency. The input clock
source can be selected to be MCLK, ACLK or ACLK:256 signal. The interrupt period can
be selected using IP0...2 located in the basic timer control register BTCTL, and selects
one of the eight FF outputs.

BTCNT2
047h 2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

7 0

rw rw rw rw rw rw rw

The output of the counter Q0...7 can be read, and the counter (Q0...7) can be written, by
software.

10.1.2 Special function register bits

Bits in the SFR address range handle the system control interaction, according to the
function implemented in the basic timer:
• Basic Timer Interrupt Flag BTIFG (located in IFG2.7)
• Basic Timer Interrupt Enable BTIE (located in IE2.7).

The Hold bit inhibits all functions of the module and reduces the power consumption to
its minimum - the leakage current.

No additional counts occur when the counter is enabled or disabled. The access of the
system to the general module register BTCTL is not affected. It can be read or written in
the usual manner.

The interrupt flag and interrupt enable follow the general rules of module interrupts.
Beside the individual interrupt enable bit, the interrupt request is also controlled by the
general interrupt enable bit GIE. The interrupt enable flag BTIE is reset on PUC. The
interrupt flag BTIFG is reset when an interrupt request of the basic timer is accepted.

10.1.3 Basic Timer1 Operation

The basic timer is constantly incremented by the clock ACLK or MCLK. The SSEL
control signal selects either the auxiliary clock ACLK  or the main clock MCLK (system
clock fsystem) for Counter BTCNT2.

An interrupt can be used to control system operation. The interrupt is a single source
interrupt.

The Basic Timer can operate in two different modes:
• Two independent eight-bit timer/counters
• One sixteen-bit timer/counter

Mode, 8-bit counters

In the 8-bit mode the basic timer BTCNT1 is incremented constantly with ACLK. When
the counter is read the asynchronous behavior of the counter (ACLK) and the system



MSP430 Family Timers

10-7

10

(MCLK) should be considered. The counter can be written to using software
asynchronous to the counter's clock.

The BTCNT2 clock signal can be selected for MCLK, ACLK or ACLK/256 with the
control signals SSEL and DIV. The counter BTCNT2 is incremented with the signal
selected.

One of the eight counter outputs can be selected to set the basic timer interrupt flag.
Read and write access can be asynchronous when ACLK or ACLK/256 is selected.

Mode, 16-bit counter

The sixteen-bit timer/counter mode is selected with the control bit DIV set. In this mode,
the clock source of counter BTCNT1/BTCNT2 is ACLK signal.
The Hold bit stops operation of both eight-bit counters.

10.1.4 Basic Timer1 Operation: Signal f LCD

The peripheral LCD module uses the signal fLCD to generate the timing for common
and segment lines. The frequency of the signal fLCD is generated from ACLK. Using a
32,768 Hz crystal in the oscillator, the frequency at fLCD is 1024 Hz, 512 Hz, 256 Hz or
128 Hz. The bits FRFQ1 and FRFQ0 allow the correct choice of the frame frequency.
The proper frequency fLCD depends on the LCD's characteristic data for the framing
frequency and the multiplex rate of the LCD.

fLCD

Common (0)

Segment

f
Framing

Figure 10.4:  Frequency Select for LCD (Example for 3MUX)



Timers MSP430 Family

10-8

10

Example for 3MUX:

LCD data sheet: fFraming = 100 Hz .... 30 Hz

FRFQ: fLCD = 6 x fFraming

fLCD = 6 x 100 Hz  ...  6 x 30 Hz = 600 Hz  ...  180 Hz

Select fLCD :   1024 Hz or 512 Hz or 256 Hz or 128 Hz

fLCD = 256 Hz    ➝    FRQ1 = 1; FRFQ0 = 0



MSP430 Family Timers

10-9

10

10.2 8-bit Interval Timer/Counter

The 8-bit interval timer supports three major functions for the application:
• serial communication or data exchange
• pulse counting or pulse accumulation
• timer

MDB

1
2
3
4ACLK

MCLK

8

8

Interval/Timer
Control Register

A

B

DQ
Set

Load

Carry

D Q

TXD

RXD

ENCNT

LSB

MSB

RXACT

TXE

ISCTL

SSEL0

SSEL1

Clear

D+ Q
Enable

8

8b

C
o
u
n
t
e
r

Clk

8b

Pre-

load

reg.

TXD_FF RXD_FF PUC

Set

'Write' to TCDAT

PUC

start
cond.

detect

P0.1
A

1
_
1

P0IES.1

ISCTL

1
_

1

G1

Set

Clear
Q

P0IFG.1

Interrupt
request
IRQP0.1

Bus Grant

P0IE.1

P0.1 - 8bT/C interrupt logic

P0.2
EN1
EN2

P0DIR.2

P0OUT.2

Figure 10.5: Principle Schematic of 8-bit Timer/Counter



Timers MSP430 Family

10-10

10

10.2.1 Operation of 8-bit Timer/Counter

The 8-bit Timer/Counter includes the following major blocks:

• 8-bit Up-Counter with pre-load register
• 8-bit Control Register
• Input clock selector
• Edge detection, e.g. Start bit at asynchronous protocols
• Input and output data latch, triggered by carry-out-signal from 8-bit counter.

8-bit Up-Counter with pre-load register

The 8-bit counter counts up with the input clock selected via two control bits (SEL0,
SEL1) of the control register. Two inputs (Load, Enable) at the counter control the
operation.

Carry
8b C o u n t e r Clk

8bit Pre-load Register

Clock selected via
input multiplexer

Load Enable

Example: Pre-load value 037h 

Load

N      = 100h - 037hClk

Q7 .... Q0

Clk

FC FFFEFDFBFA

Carry

00/37 38 39 3A 3B

Figure 10.6:  Schematic of 8-bit Counter

One of the two inputs controls the load function. A load operation loads the counter with
the data of the pre-load register. A write access to the counter results in loading the pre-
load register contents into the counter.

The software writes or reads the pre-load register with full control over all instructions.
The pre-load register acts as a buffer, and can be written immediately after the load of
the counter has completed.

The second of the two inputs enables the count operation. When the enable signal is set
high, the counter will count-up each time a positive clock edge is applied to the clock
input of the counter.



MSP430 Family Timers

10-11

10

8-bit Control Register
The information stored in the 8-bit control register selects the operating mode of the
timer/counter and controls the function.

Input clock selector
Two signals out of the 8-bit control register select the source for the clock input of the 8-
bit up-counter. The four sources are the system clock MCLK, the auxiliary clock ACLK,
the external signal from pin P0.1 and the signal from the logical .AND. of MCLK and pin
P0.1.

Edge detection
Serial protocols like UART protocol needs start-bit edge detection to determine the start
of a data transmission at the receiver.

Input and output data latch, RXD_FF and TXD_FF
The clock to latch data into the input and output data latch is the carry signal from the 8-
bit counter. Both latches are used as single bit buffers and change their outputs with the
pre-defined timing.

10.2.2 8-bit Timer/Counter Registers

The Timer/Counter module hardware is controlled using access via the 8-bit MDB
structure and MAB. It should be accessed using byte instructions.

Register short form Register type Address Initial state
• T/C control register: TCCTL Type of read/write   042h Reset
• Pre-load register: TCPLD Type of read/write   043h Unchanged
• Counter: TCDAT Type of read/(write)   044h Unchanged

8-bit Timer/Counter Control Register

The information stored in the control register determines the operation of the
timer/counter.

TCCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r(-1)
042h

7 0

ISCTLSSEL0SSEL1 TXE RXACT TXD RXD

rw-0

ENCNT

Figure 10.7: 8-bit Timer/Counter Control Register

Bit 0: The RXD bit is read only. The signal from the external pin P0.1 is latched
with the carry of the 8-bit counter. The external signal is scanned in a fixed
timing sequence independent of the different run-times from software.

Bit 1: The TXD register bit is the buffer for the TXD signal clocked out with the
carry from the 8-bit counter at the pin P0.2.



Timers MSP430 Family

10-12

10

Bit 2: The RXACT bit controls the edge detect logic. The edge detect logic
needs a reset ENCNT bit (bit 3) for proper counter enable operation.
RXACT = 0: The edge detect FF is cleared and it can not be the source

of enabling the counter operation.
RXACT = 1: The edge detect FF is enabled for operation. A positive or

negative edge at pin P0.1, selected by P0IES.1, sets the FF
and the counter is prepared for count operation. If the FF is
set it remains set.

Bit 3: The ENCNT bit sets the counter enable signal. The 8-bit counter
increments its value with each rising edge at clock input.
Together with the RXACT bit (bit2, '0') this bit provides start/stop
operation.

Bit 4: The TXE signal controls the 3-state output buffer for the TXD bit.
TXE = 0: 3-state
TXE = 1: Output buffer active.

Bit 5: The ISCTL signal controls the interrupt source between the I/O pin P0.1
and the carry of the 8-bit counter.
ISCTL = 0: The I/O pin P0.1 is the source of interrupt P0IFG.1.
ISCTL = 1: The carry from the 8-bit counter is the source of interrupt

P0IFG.1.

BIT 6,7: The bits SSEL0 and SSEL1 select the source of the clock input.

SSEL1 SSEL0 Clock source
0 0 Signal at pin P0.1 according to P0IES.1
1 0 MCLK
0 1 ACLK
1 1 Signal pin P0.1(according to P0IES.1) 

.AND. MCLK

8-bit Timer/Counter Pre-load Register
The information stored in the pre-load register is loaded into the 8-bit counter when a
write access to the counter (TCDAT) is performed:

;========= Definitions ===========================================
Dummy .EQU 0 ; Value for dummy is not loaded into

; counter
TCDAT .EQU 044h ; Address of 8-bit Timer/Counter
;========= Write pre-load register content to 8-bit Timer/Counter =
;

MOV.B #Dummy,&TCDAT
;
 The pre-load register (TCPLD) can be accessed using the address 043h.



MSP430 Family Timers

10-13

10

8-bit Counter Data
The data of the 8-bit counter can be read using the address 044h. Writing to the counter
loads the content of the pre-load register - not the data mentioned by the instruction.

10.2.3 Special function register bits, 8-bit Timer/Counter related

The 8-bit Timer/Counter has no individual interrupt bits; it shares the interrupt bits with
the port P0. One bit in the control register TCCTL, the bit ISCTL, selects the interrupt
source for the interrupt flag.

The port0 signal P0/RXD.1 or the carry of the 8-bit counter is used for interrupt source.
Two bits in the SFR address range and one bit in the port0 address frame handle the
interrupt events on P0/RXD.1 :
• P0/RXD.1 Interrupt Enable P0IE.1 (located in IE1.3, initial state is reset)
• P0/RXD.1 Interrupt Edge Select P0IES.1(located in P0IES, initial state is reset)

The interrupt flag is a single source interrupt flag and is automatically reset when the
processor system serves it. The enable bit and edge select bit remain unchanged.

10.2.4 8-bit Timer/Counter in UART Applications

The Timer/Counter peripheral incorporates some features to support serial data
exchange with software. The data exchange consists of the transmit cycle and receive
cycle. The peripheral hardware supports half duplex protocols.

Software operation can be separated into three categories to support the different
conditions and requirements of individual applications:
• Control the bit information immediately after each receive cycle
• Control all bits of one frame immediately after each receive cycle
• Receive the complete message, store the frames in memory and check it after

completion of receive cycle.

UART Protocol

The UART protocol is a serial bit stream which includes start bit, 1 to 8 data bits, an
optional parity bit, an optional address bit and 1 or 2 stop bits. The least significant data
bit is sent first after the start bit.

Mark

Space

Startbit 1 to 8 Databit, LSB first

Parity bit PA: optional

Address bit AD: optional

Stop bit SP: 1 or 2

One Frame

Figure 10.8: Asynchronous communication format



Timers MSP430 Family

10-14

10

UART Protocol Receive Mode

The Timer/Counter acts as a timer and the carry out latches the bit information available
at the pin P0.1. The negative edge - from mark to space of the start bit - indicates the
start of one frame. Each bit is scanned  right in the middle.

Mark

Space

One Frame

1 2 3 4 10 11 12 13 145 6 7 8 9

D0 D1 D2 D3 D4 D5 D6 D7 AD PA SP SP

Carry out

Figure 10.9: Scanning of the asynchronous bits of one frame

The software UART is closely combined with the start of a receive cycle and the baud
rate. All timings vary from bit-to-bit if a reference or clock frequency clocks the timer at a
frequency which is not a multiple of the selected baud rate. The example in this section
should run with a baud rate of 2400 baud with a crystal frequency of 32,768 Hz. The
result of these conditions is that each bit interval has got its own timing and therefore its
own pre-load value.

UART Protocol Transmit Mode

The Timer/Counter acts as a timer and the carry out latches the bit information available
from the control register TCCTL, bit 1: TXD. The software UART should load the TXD bit
with the information which should be on I/O pin P0.2. The next carry from the timer
latches the TXD bit into the TXD_FF. The transmission of data out of I/O pin P0.2 is
enabled by setting of bit TXE in the control register. The reset state of the signal TXE
disables the output buffer connected to pin P0.2 and sets parallel the TXD_FF output.
This corresponds to the mark state defined for UART format.

Mark

Space

One Frame

1 2 3 4 10 11 12 135 6 7 8 9

D0 D1 D2 D3 D4 D5 D6 D7 AD PA SP SP

Carry out

Figure 10.10: Transmitting of the asynchronous bits of one frame



MSP430 Family Timers

10-15

10

The timing of the transmit part of the software UART depends on the baud rate. All
timings vary from bit-to-bit if a reference or clock frequency clocks the timer at a
frequency which is a non-multiple of the selected baud rate. The example in this section
should run with a baud rate of 2400 baud with a crystal frequency of 32,768 Hz. The
result of these conditions is that each bit interval has got its own timing, and therefore its
own pre-load value.

Each communication needs features to recognize errors that happen during the data
transmission. Four different error conditions are defined:
• Parity Error
• Overrun Error
• Framing Error
• Break detect

In addition to the previous fundamentals, there is an optional function included to
support protocol handling: the identification of the start of a block of frames and the
destination of the telegram. Two different modes are used in the industry for
identification: the idle line multiprocessor protocol, and the address bit multiprocessor
protocol.

Idle line multiprocessor mode format

The blocks of data are separated by idle time between them. An idle receive line is
detected when ten or more mark state (1's) in a row are received after the first stop bit of
a character. When two stop bits are used, the second is counted as the first mark bit of
the idle. The first character received after an idle period is an address character. The
idle line periods detected by the receiver are illustrated with one and two stop bits:

Mark

Space

1 2 103 4 7 8 9

SP

Carry out: Receive 5 6

10 bit idle period

Mark

Space
SP SP

10 bit idle period

1 2 103 4 7 8 9Carry out: Transmit 5 6

1 2 103 4 7 8 9Carry out: Receive 5 6

1 2 103 4 7 8 9Carry out: Transmit 5 6

Figure 10.11: UART idle period



Timers MSP430 Family

10-16

10

It is recommended to transmit an idle period of 11 bits instead of 10 bits.

The precise idle period generates an efficient address character identifier. The first
character of a block of frames can be identified as an address. The idle periods of
frames within a block of information should not exceed the idle period detect time of 10
bits.

Mark

Space

Mark

Space

Block of Frames

Idle periods of 10 bit or more
Expanded Block

Address Data DataST ST STSP SP SP

First frame within block
is address. It follows idle
period of 10 bit or more.

Frame within block Frame within block

Idle period < 10 bits

Figure 10.12: Idle line multiprocessor protocol

Address bit multiprocessor mode format

Each character contains an extra bit that represents an address indicator. The first
character in a block of data (frames) carries an address bit that is set. This indicates that
the character is an address.



MSP430 Family Timers

10-17

10

Mark

Space

Mark

Space

Block of Frames

Idle periods of no significance
Expanded Block

Address Data DataST ST STSP SP SP

First frame within block
is address. The address

data bit is set.
for frame within block

Idle time is of no significance

1 0 0

 The address bit is reset

Figure 10.13:  Address bit multiprocessor mode format

Transmit/Receive Application Example

This programming example of a serial UART communication protocol, using the features
of the 8-bit Timer/Counter, has these characteristics:
• Baud rate 2400 baud
• ACLK = 32 768 Hz
• Parity Even
• Two stop bits
• Half duplex

The carry signal of the Timer/Counter module is selected for the interrupt source instead
of the P0.1 source. The associated vector contains the address of the transmit/receive
interrupt routine. The first instructions separate the program flow into the transmit or
receive part, and use the bit TXRX as an indicator for the running mode.

; -------- Define interrupt vector -------------------------------
.SECT  "RXTX_vec",FFF8 ;Vector of P0.1 or carry from

;8-bit Timer/Counter
.Word VECRXTX ;Address of UART

;handler
...........

The time intervals between two carry signals differs during each transmit or receive
cycle. The selected baud rate of 2400 baud and the clock frequency of 32,768 Hz would
require a divider of Error!  = 13.67.  The deviation from this ideal factor is accomplished
using the sequence 14-13-14 for the division.



Timers MSP430 Family

10-18

10

; Definitions of used expressions
RXD .EQU 1 ; Receive data bit in control register TCCTL
TXD .EQU 2 ; Transmit data bit in control register TCCTL
RXACT .EQU 4
ENCNT .EQU 8 ; Counter enable bit in control register TCCTL
TXE .EQU 010h ; 1: TX buffer active,  0: TX buffer 3-state
ISCTL .EQU 020h
TCCTL .EQU 042h ; Address of Timer/Counter control register
TCPLD .EQU 043h ; Address of Timer/Counter pre-load register
TCDAT .EQU 044h ; Address of Timer/Counter
BitTime1 .EQU 0100h - 0Eh ; Error!   sec. = 427.2µs bit length
BitTime1_2 .EQU 0100h - 07h ; Half of bitime1
BitTime2 .EQU 0100h - 0Dh ; Error!   sec. =  396.7 µs bit length
AdP0_0 .EQU 0h ; Interrupt enable 1 register address (SFR)
IEnP0_0 .EQU 08h ; Bit in Interrupt enable 1 register (SFR)
ParVal .EQU 0h ; Parity Even selected
;
(P0.1 respectively TC interrupt-enable)
; Registers or RAM used for data handling
RCstatus .EQU 0200h ; RAM (or Register), stores actual status of

; receive sequence
TXStatus .EQU 0201h ; RAM (or Register), stores actual status of

; transmit sequence
TXData .EQU R6 ; Register that contains the transmit data
RCData .EQU R6 ; Stores receive data (RXD) in HighByte
Parity .EQU 0yyyh ; LSB is actual status of parity. The start value

; determines odd or even parity
Bend .EQU 2 x 12

The main loop in the program for both the transmit and receive function of an
information sequence is demonstrated using the outputting of a table's data and
receiving and storing data into a table:

; ----------------- Transmitting of frames: a table is to be output -----------------------------------
; Ry points to the table
;

MOV #Table2,Ry ; Start of table copied to Ry
L$5 CRL.B &TXStatus

CMP #TabEnd+1,Ry ; All frames transmitted?
JEQ TabFin ; Yes, stop transmision and continue program
MOV.B @Ry+,TXData ; Info to TXData
CALL #TXInit ; No, initialize transmission

TXStat CMP #Bend,TXStatus ; output of one frame completed?
JEQ L$5 ; Yes, transmit next data of table!
JMP TXStat ; No, wait for completion
......
......

Table2 . 0xxh Byte ; Start of table containing data for transmission



MSP430 Family Timers

10-19

10

......

......
TabEnd . 0zzh Byte ; End of table containing data for transmission

......
TabFin ...... ; Transmission of table is completed

; Continue program here

; ----------------- Prepare receiving of one frame -------------------------------------------------------
; Rx points to the table
;

MOV #Table1,Rx ; Start of receive table copied into Rx
CALL #RCPrep ; Receive of next frame
......

; ----------------- Processing part of received frame: Store frame in table1 ----------------------
RECCMPL RLA RCData ; Adjust info to HighByte (remove parity bit)

SWPB RCData ; Swap info to LowByte
MOV.B RCData,0(Rx) ; Store info in table1
INC Rx ; and pre-increment of table pointer
CALL #RCInit ; Prepare for next frame
...... ; Continue with background program



Timers MSP430 Family

10-20

10

Transmit Mode Application Example :

2400 Baud, ACLK, 8 data bits, Parity Even, Two Stop bits

The transmit mode uses the 8-bit timer/counter, the pre-load register, the control
register, the clock selector and the TXD data latch.

MDB

edge
detect

1
2
3
4ACLK

MCLK

8

8

Interval/Timer
Control Register

A

B

DQ
Set

Load

Carry

D Q

TXD

RXD

ENCNT

LSB

MSB

RXACT

TXE

ISCTL

SSEL0

SSEL1

Clear

D
+

Q
Enable

8

8b

C
o
u
n
t
e
r

Clk

8b

Pre-

load

reg.

1

1

1

0

Data

X

P0.2

TXD_FF RXD_FF

'Write' to TCDAT

1

Set

PUC

PUC

0 -> 1

P0.1
A

1
_
1

P0IES.1

ISCTL

1
_

1

G1

Set

Clear
Q

P0IFG.1

Interrupt 
request
IRQP0.1

Bus Grant

P0IE.1

P0.1 - 8bT/C interrupt logic

EN1
EN2

P0DIR.2

P0OUT.2

Figure 10.14: 8-bit Timer/Counter configuration for transmit example 2400Baud, ACLK
clock



MSP430 Family Timers

10-21

10

Before a serial communication character transmit starts there are some operation
conditions to be defined:
• The output buffer should be enabled -> TXE bit is set.
• The clock input into the 8-bit timer should be selected -> ACLK is selected with

SSEL0 bit is reset and SSEL1 bit is set.
• The interrupt source control bit ISCTL selects carry out of timer.

The appropriate bits regarding P0.1 direction and interrupt edge bits should be chosen
properly.
• The pre-load register is loaded.
• The write access to the counter loads the pre-load value into the timer .
• The RXACT bit is reset.

; ----------------- Prepare Transmit Cycle -----------------------------------------------------------------
TXINIT MOV.B #BitTime1_2,&TCPLD ; Load time until start bit starts

; Disable P0.1 O/P buffer (direction in) if  
; needed

MOV.B #072h,&TCCTL ; TXD = 1 : Defined Start,  ACLK selected
; TXEN = 1

MOV.B #0,&TCDAT ; Dummy write to load 8b counter/timer
MOV.B #BitTime1,&TCPLD ; Load bit time of first bit for transmission

; into pre-load register, time of Startbit
BIS.B #ENCNT,&TCCTL ; Set transmit start condition
BIS.B #IEnP0_0,&AdP0_0 ; Interrupt enabled for P0.1 in SFR,

; address is 0.
CLR.B &TXStatus ; Temporary register is prepared.
MOV.B #ParVal,Parity ; ParVal = 0 for Even, ParVal = 1 for Odd 

; Parity
RET



Timers MSP430 Family

10-22

10

; ----------------- Acknowledge Transmit/Receive Cycle, UART Handler -------------------------
; The following two instructions decide whether to transmit or to receive data
; It is necessary because they use a common interrupt vector address
VECRCTX BIT.B #RXACT,&TCCTL ; Test which interrupt handler is active

JNZ RCINTRPT ; Receive mode is active -> Jump
;
TXINTRPT PUSH R5 ; RXACT = 0 -->  Transmit

MOV.B &TXStatus,R5 ; Use TXStatus for
BR TXTAB(R5) ; branching

TXTAB .Word TXStat0 ; Startbit ; Bitime2, 13 clocks of ACLK
.Word TXStat1 ; Bit 0, LSB ; Bitime1, 14 clocks of ACLK
.Word TXStat1 ; Bit 1 ; Bitime1, 14 clocks of ACLK
.Word TXStat2 ; Bit 2 ; Bitime2, 13 clocks of ACLK
.Word TXStat1 ; Bit 3 ; Bitime1, 14 clocks of ACLK
.Word TXStat1 ; Bit 4 ; Bitime1, 14 clocks of ACLK
.Word TXStat2 ; Bit 5 ; Bitime2, 13 clocks of ACLK
.Word TXStat1 ; Bit 6 ; Bitime1, 14 clocks of ACLK
.Word TXStat1 ; Bit 7 ; Bitime1, 14 clocks of ACLK
.Word TXPar ; Parity bit ;  Bitime2, 13 clocks of ACLK
.Word TXStop ; Stop bit 1 ;  Bitime1, 14 clocks of ACLK
.Word TXStop ; Stop bit 2 ;  Bitime1, 14 clocks of ACLK
.Word TXCCmpl ; Frame transmitted

TXStat0 BIC.B #TXD,&TCCTL
MOV.B #BitTime2,&TCPLD

;Load time 13/32768 [sec] into pre-load register
JMP TXRET

TXStat2 MOV.B #BitTime2,&TCPLD
;Load time 13/32768 [sec] into pre-load register

JMP L$3 ; Shift next bit out at P0.2
TXStat1 MOV.B #BitTime1,&TCPLD

;Load time 14/32768 [sec] into pre-load register
L$3 RRA TXData ; LSB is shifted to Carry

JNC L$1 ; Jump to L$1 if bit = 0
L$2 BIS.B #TXD,&TCCTL ; Bit =1, set TXD bit in control register TCCTL

XOR.B Parity ; Count 1's for parity
JMP TXRET ; Bit output completed

L$1 BIC.B #TXD,&TCCTL ; Bit =0, reset TXD bit in control register TCCTL
TXRET INCD.B &TXStatus ; Bit output completed
TXStat12 POP R5

RETI ; Transmit of one bit completed
; ----------------- Parity bit check: Count of 1's in Parity must be even ----------------------------
TXPar MOV.B #BitTime2,&TCPLD

BIT.B #1,Parity ; Check parity bit value
JNZ L$2 ; Parity bit should be Mark
JMP L$1 ; Parity bit should be Space

; ----------------- Output of stop bit(s) ----------------------------------------------------------------------
TXStop MOV.B #BitTime1,&TCPLD

JMP L$2 ; Send stop bit 1 or 2



MSP430 Family Timers

10-23

10

; ----------------- Output of one frame completed -------------------------------------------------------
TXCmpl BIC.B #IEnP0_0,&AdP0_0 ; Interrupt disabled for P0.2 in SFR,

; address is 0.
; BIC.B #ENCNT,&TCCTL; Stop counter to conserve power consumption

JMP TXStat12
; ----------------- End of transmit interrupt handler ------------------------------------------------------



Timers MSP430 Family

10-24

10

Receive Mode Application Example:

2400 Baud, ACLK, 8 data bits, Parity Even, Two Stop bits
The receive mode uses the 8-bit timer/counter, the pre-load register, the control register,
the clock selector, the edge detect logic and the RXD data latch.

MDB

edge
detect

1
2
3
4ACLK

Fsys

8

8

Interval/Timer
Control Register

A

B

DQ
Set

Load

Carry

D Q

TXD

RXD LSB

MSB

RXACT

TXE

ISCTL

SSEL0

SSEL1

Clear

D
+

Q
Enable

8

8b

C
o
u
n
t
e
r

Clk

8b

Pre-

load

reg.

1

1

1

0/1

X

Data

TXD_FF RXD_FF

X

PUC

PUC

'Write' to TCDAT

ENCNT
0

Set

P0.1
A

1
_
1

P0IES.1

ISCTL

1
_

1

G1

Set

Clear
Q

P0IFG.1

Interrupt 
request
IRQP0.1

Bus Grant

P0IE.1

P0.1 - 8bT/C interrupt logic

P0.2
EN1
EN2

P0DIR.2

P0OUT.2

Figure 10.15: 8-bit Timer/Counter configuration for receive example 2400Baud, ACLK
clock



MSP430 Family Timers

10-25

10

Before a serial communication character receive starts there are some operation
conditions to be defined (assuming RXACT bit is reset):
• The output buffer should be disabled -> TXE bit is reset.
• The clock input into the 8-bit timer should be selected -> ACLK is selected with

SSEL0 bit is reset and SSEL1 bit is set.
• The interrupt source control bit ISCTL selects carry out of timer.

The appropriate bits regarding P0.1 direction and interrupt edge bits should be chosen
properly.
• The pre-load register is loaded.
• The write access to the counter loads the pre-load value into the timer .
• The RXACT bit is set.

; ----------------- Prepare Receive Cycle ------------------------------------------------------------------
RCPREP MOV.B #062h,&TCCTL ; SSEL0 = 0, SSEL1 = ISCTL = 1,

; all other bits are cleared
; Select ACLK for clock source to 8-bit timer
; Use #072h if TXEN should be enabled

RCINIT MOV.B #BitTime1_2,&TCPLD
; Set Preload register with t1-2 = 0100h - 7

MOV.B #0,&TCDAT ; Prepare timer interval for start bit scanning
MOV.B #BitTime1,&TCPLD

; Set Preload register with Bittime 1 for receive 
   of first data bit

CLR RCstatus ; Prepare temporary registers
MOV.B #ParVal,Parity ; Register Parity=0 for Even parity receive mode

; and Parity=1 for Odd parity
BIS.B #RXACT,&TCCTL ; activate neg. edge detect of P0.1

; ( -> RX data )
BIS.B #IENP0_0,&ADP0_0

; Enable interrupt according to P0.1
; Interrupt source is carry from 8-bit timer
; according to state of ISCTL

RET

As long as the RXACT and ENCNT bit are reset the timer/counter is halted. The change
to the receive active state with a set of RXACT bit enables negative edge detection. The
first edge of the start bit, applied to pin P0.1, sets the output of the edge detect latch. It
will be set until another reset of RXACT bit is performed.

Once the edge detect latch is set the timer starts operation. The first time interval is
started and with the elapse of the programmed time the logical level of pin P0.1 is
latched into the RXD latch. After that activity the interrupt is requested.

The interrupt routine for the first bit is optional and can test the presence of a start bit. In
the absence of the start bit, the receive cycle is stopped. When the receive cycle is
continued the next timing should be prepared by loading the pre-load register with
proper data.

All further bits follow nearly the same process in the interrupt routine.



Timers MSP430 Family

10-26

10

The interrupt routine should handle:
• Store RXD bit information
• Prepare next timing
• Optional: update parity information

decide program flow on parity error
look for address bit information

• Test stop bit if received bit should be stop bit.

Note:      UART protocol, LSB/MSB sequence

UART protocol shifts the LSB of the data first. In order to collect the data properly,
use the RRC instruction, to have the correct order of bits.

; ----------------- Receive interrupt handler ---------------------------------------------------------------
RCINTRPT PUSH R5 ; Receiver interrupt routine

; R5 is used temporary as pointer
; of receive bit

MOV.B &RCstatus,R5 ;
BR RCTAB(R5) ;

;
RCTAB .Word RCstat0 ; Receive start bit

; set receive time bit0/LSB, 13ACLK
.Word RCstat1 ; Receive bit 0 ; set receive time bit1,

; 14ACLK
.Word RCstat1 ; Receive bit 1 ; set receive time bit2,
.Word RCstat2 ; Receive bit 2 ; set receive time bit 3
.Word RCstat1 ; Receive bit 3 ; set receive time bit 4
.Word RCstat1 ; Receive bit 4 ; set receive time bit 5
.Word RCstat2 ; Receive bit 5 ; set receive time bit 6
.Word RCstat1 ; Receive bit 6 ; set receive time bit 7: MSB
.Word RCstat1 ; Receive bit 7 ; set receive time parity bit
.Word RCstat2 ; Receive parity bit

; set receive time stop bit 1
.Word RCstop1 ; Receive stop bit 1

; set receive time stop bit 2
.Word RCstop2 ; Receive stop bit 2

; set receive time stop bit 2
.Word RCCmpl ; Frame received

; ----------------- Receive start bit: Test for space ------------------------------------------------------
RCstat0 BIT.B #RXD,&TCCTL ; Check start bit

JC RCError ; Error: start bit is Mark not Space
MOV.B #BitTime2,&TCPLD ; Start bit fine, load pre-load

; register
JMP RCRET

;



MSP430 Family Timers

10-27

10

RCstat2 MOV.B #BitTime2,&TCPLD
; Load pre-load register with bit time 2

JMP RCBit
RCstat1 MOV.B #BitTime1,&TCPLD

; Load pre-load register with bit time 1
RCBit BIT.B #RXD,&TCCTL ; RXD bit -> Carry bit

JNC RCRET ; RXD bit = Carry bit = 0 ?, Yes, jump
RRC RCData ; RXD bit -> MSB, Negative bit
INC.B &Parity ; RXD bit = 1, increment '1'-counter

JMP RCRET1
RCRET RRC RCData ; RXD bit -> MSB, Negative bit
RCRET1 INCD.B &RCstatus
RCCmpl POP R5

RETI
;
; Parity bit was received just like all other bits. During first stop bit parity is tested
;
RCstop1 BIT.B #1,&Parity ; Check parity bit. Bit must be zero.

JNZ RCError ; Parity bit false.
;
RCstop2 MOV.B #BitTime1,&TCPLD ; Load pre-load register with bit time 1

BIT.B #RXD,&TCCTL ; Check stop bit for Mark
JNZ RCRET ; Stop bit is Mark -> Ok

;
; Error handling: a new start is tried

RCError POP R5
CALL RCINIT ; Initialize receive routine again
RETI



Timers MSP430 Family

10-28

10



MSP430 Family Timers

10-29

10

10.3 The Watchdog Timer

The primary function of the Watchdog Timer module (WDT) is to perform a controlled
system restart after a software problem has occurred. If the selected time interval
expires, a system reset is generated. If this watchdog function is not needed in an
application, the module can work as an interval timer, which generates an interrupt after
the selected time interval.

MDB

1

1
ACLK

MCLK

16

Watchdog Timer
Control Register

A

Clear

IS1

IS0

MSB

SSEL

CNTCL

Int.
Flag

see Interrupt
definition

16b

C
o
u
n
t
e
r

Clk

1
2
3
4

_

0

1

0

1

1

0

1

0

P
a
s
s
w
o
r
d
c
m
p.

EQU

Write enable
LowByte

LSB

B
A

TMSEL
PUC

Q6
Q9
Q13
Q15

R/W
_

EQU

Y

PUC

(asyn)

WDTQn

HOLD

EN

NMI

NMIES

WDTCNT WDTCTL

Figure 10.16: Schematic of Watchdog Timer

Features:
• eight software selectable time intervals
• two operating modes: as watchdog or interval timer
• expiration of time interval in watchdog mode generates a system reset; in timer mode,

it generates an interrupt request
• for safety reasons, writing to the WDT control register is only possible using a

password
• supports ultra-low power feature using hold mode



Timers MSP430 Family

10-30

10

10.3.1 Watchdog Timer Register

The watchdog timer counter WDTCNT is a 16-bit up-counter which is not directly
accessible by software. The WDTCNT is controlled through the watchdog timer control
register WDTCTL, which is a 16-bit read/write-register located at the low byte of word
address 0120h. Any read or write access should be done with word instructions, using
no suffix or suffix '.w'. Writing to WDTCTL is, in both operating modes (watchdog or
timer), only possible in conjunction with the correct password.

WDTCTL

rw-0 rw-0 rw-0 rw-0 r0(w) rw-0 rw-0 rw-0
0120h IS0IS1SSELCNTCLTMSEL

07

NMINMIESHOLD

Figure 10.17: Watchdog Timer Control Register

Bits 0,1: The bits IS0,IS1 select one of four taps from the WDTCNT.
Assuming fcrystal = 32,768 Hz and fSystem = 1 MHz, the following intervals
are possible:

SSEL  IS1 IS0 interval [ms]
0 1 1 0.064 tMCLK x 26
0 1 0 0.5 tMCLK x 29
1 1 1 1.9 tACLK x 26
0 0 1 8 tMCLK x 213
1 1 0 16.0 tACLK x 29
0 0 0 32 tMCLK x 215 <- Value after PUC (Reset)
1 0 1 250 tACLK x 213
1 0 0 1000 tACLK x 215

Bit 2: The SSEL bit selects the clock source for WDTCNT.
SSEL = 0: WDTCNT is clocked by the system frequency
SSEL = 1: WDTCNT is clocked by ACLK, the crystal frequency (32,768 Hz)

Bit 3: CNTCL bit: In both operating modes writing a '1' to this bit restarts the
WDTCNT at 00000h. The read value is not defined.

Bit 4: The bit TMSEL selects the operating mode: watchdog or timer.
TMSEL = 0: Watchdog mode
TMSEL = 1: Interval timer mode



MSP430 Family Timers

10-31

10

BIT 5: The NMI-Bit selects the function of the RST/NMI-input pin. It is cleared after
PUC.
NMI = 0: The RST/NMI input works as Reset input.

As long as the RST/NMI-pin is held 'low', the internal PUC-signal is
active (level sensitive).

NMI = 1: The RST/NMI input works as edge sensitive non-maskable interrupt
input.

BIT 6: This bit selects the activating edge of the RST/NMI input if NMI function is
selected. It is cleared after PUC.
NMIES = 0: A rising edge triggers a NMI-interrupt.
NMIES = 1: A falling edge triggers a NMI-interrupt.

Bit 7: This stops the complete operation of the watchdog counter. It is mandatory to
support the ultra-low power features. The clock multiplexer is disabled and the
counter stops incrementing. It holds the actual state until the HOLD bit is reset
and the operation continues. It is cleared after PUC.
HOLD = 0: Function is fully active.
HOLD = 1: Clock and counter are stopped

Accessing WDTCTL Watchdog Timer  Control Register

• Read access:
WDTCTL can be read without restriction by a password. A read is performed by
simply accessing word address 0120h. The Lowbyte contains the value of WDTCTL.
The value of the Highbyte is 069h. The value of the Highbyte is selected to 069h and
limits the effect of instructions that can alter the WDTCTL register.

Reading WDTCTL:

WDTCTL

r rw-x, (w)
0120h

015 8 7

0 1 1 0 1 0 0 R e a d   D a t a1

r r r r r r r
6 9

• Write access:
A write access to WDTCTL is only possible using the correct password in the high-
byte. Changing the WDTCTL-register is performed by writing to word address 0120h.
The low-byte contains the data to be written to WDTCTL and the high-byte has to be
the password which is 05Ah. If any other value than 05Ah is written to the high-byte of
address 0120h a system reset is generated.



Timers MSP430 Family

10-32

10

Writing WDTCTL:

WDTCTL

(w) rw-x, (w)
0120h

015 8 7

0 1 0 1 1 0 1 W r i t e   D a t a0

5
(w) (w) (w) (w) (w) (w) (w)

A

10.3.2 Watchdog Timer interrupt control functions

The Watchdog Timer uses two bits in the SFR address range:
• WDT Interrupt Flag WDTIFG (located in IFG1.0, initial state is reset)
• WDT Interrupt Enable WDTIE (located in IE1.0, initial state is reset)

The WDT interrupt flag is reset when power is applied or a reset from the,,  RST/NMI
pin is performed. The signal is called POR. The watchdog interrupt flag indicates
whether the watchdog was the reason for a PUC or a power/reset. The vector address is
in address 0FFFEh. The enable bit is not relevant.

The Watchdog Timer operates in two different modes. When the WDT is configured to
operate in watchdog mode both a watchdog overflow and a security violation trigger the
PUC signal which automatically clears the appropriate register bits in the entire system.
For the bits in the WDTCTL register, it results in a  system configuration where the WDT
is set into the watchdog mode and the ,,  RST/NMI pin is switched to reset
configuration.

When the WDT is configured to operate in timer mode, the WDTIFG flag is set after the
selected time interval, and it requests a standard interrupt service. The WDT interrupt
flag is a single source interrupt flag and is automatically reset when the processor
system serves it. The enable bit remains unchanged. The WDT interrupt enable bit and
the GIE bit should be set to allow an interrupt request situation. The vector address of
the interrupt in timer mode is different from that in watchdog mode.

10.3.3 Watchdog Timer Operation

The Watchdog Timer module can be configured in two modes, the watchdog mode and
the interval timer mode.

Watchdog mode

After power-on reset or a system reset, the Watchdog Timer module automatically
enters the watchdog mode with all bits in watchdog control register WDTCTL and
watchdog counter WDTCNT cleared. The initial conditions at the WDTCTL register
result in a time interval of 32 ms @ fsys=1 MHz. Since also the digital controlled
oscillator DCO in the system clock generator is set to its lowest frequency, about 32,600
cycles are available for the software to react to such a drastic event. The initial
conditions were selected to run the WDCNT with the system frequency fsys and to allow
the application software to start operation with a compromise of the watchdog time in the
middle of the time frame.



MSP430 Family Timers

10-33

10

When the module is used in watchdog mode, the software must periodically reset
WDTCNT by writing a '1' to bit CNTCL of WDTCTL to prevent expiry of the selected time
interval. If a software problem occurs and the time interval expires because the counter
is not reset anymore, a reset is generated and system power-up clear PUC is activated.
The system restarts at the same program address as after power-up. The cause of reset
can be determined by testing bit0 in the Interrupt Flag Register 1 in the SFR block. The
appropriate time interval is selected by setting the bits SSEL, IS0 and IS1 accordingly.

Timer mode

Setting bit TMSEL in the WDTCTL register to '1' selects the timer mode. This mode
provides periodic interrupts at the selected time interval. A time interval can also be
started under software control by writing a '1' to bit CNTCL in the WDTCTL register.

Note: Watchdog Timer, changing the time interval

Changing the time interval without clearing the WDTCNT may result in an
unexpected immediate system reset or interrupt. The time interval should be
changed together with a counter clear in one instruction e.g. MOV #05A0Ah,
&WDTCTL. Sequential clear and interval select may result in an unexpected
immediate system reset or interrupt.

Changing the clock source during normal operation may result in additional clocks
for the WDTCNT.

Operation in low- power modes

The system check generator can run in five different modes. With three of them the
MCLK and ACLK signals are active. During one mode only the ACLK signal is active
and during the other remaining mode neither MCLK nor ACLK signal is active.

The application requirements set the handling of the watchdog timer in combination with
the hardware reaction to the different operating conditions of ACLK and MCLK.

CPUOFF mode: Program execution is stopped. The software should define
the operating conditions during this operating mode.

MCLKOFF mode/LPM2..3: The ACLK signal is active and MCLK is inactive. When
ACLK (32,768 Hz) is selected, the watchdog timer continues
operation and will awake the CPU through a system reset or
a timer interrupt (if enabled) depending on the selected
operating mode. When MCLK is selected the WDT halts
operation until MCLK is restarted.

OSCOFF mode/LPM4: The MCLK and ACLK signal are inactive and the watchdog
timer counter halts until the system is restarted. The
software can reset the counter before entering the OscOff
mode depending on the application needs.



Timers MSP430 Family

10-34

10

The provision of a hold function supports ultra-low power operation. Where an
application uses various low power modes,  the watchdog timer may be held.

Software example

; After RESET or power-up, the WDTCTL register and WDTCNT are cleared and the
initial
; operating conditions are watchdog mode with a time interval of 32 ms.
;
;Constant definitions:
;
WDTCTL .EQU 0120h    ; Address of Watchdog timer
WDTPW   .EQU 05A00h     ; Password
T250MS  .EQU 5          ; SSEL, IS0, IS1 set to 250 ms
T05MS   .EQU 2          ; SSEL, IS0, IS1 set to 0.5 ms
CNTCL   .EQU 8          ; Bit position to reset WDTCNT
TMSEL   .EQU 010h       ; Bit position to select timer mode
;
; As long as watchdog mode is selected, watchdog reset has to be done periodically
; through a instruction e.g.:
;

........

........
MOV #WDTPW+CNTCL,&WDTCTL

         .
         .
;
;To change to timer mode and a time interval of 250 ms, the following instruction
sequence
; can be used:
;

MOV #WDTPW+CNTCL+TMSEL+T250MS,&WDTCTL
; Clear WDTCNT and
; select 250 ms and timer
; mode

........

........
; Note: The time interval and clear of WDTCNT should be modified within one

instruction to avoid unexpected reset or interrupt
;
; Switching back to watchdog mode and a time interval of 0.5 ms is performed by:
;

........

........
MOV #WDTPW+CNTCL,&WDTCTL ; Reset WDT counter

;
MOV #WDTPW+T05MS,&WDTCTL ; Select watchdog mode

; and 0.5 ms
........



MSP430 Family Timers

10-35

10

10.4 8-bit PWM Timer

Using an 8-bit timer counter, PWM peripheral generates a rectangular output pulse with
a duty factor of 0 to 100%. The duty factor is specified by an 8-bit duty control register
PWMDT.

The PWM timer module has the following features:
• Selection of eight clock sources
• Duty factors from 0 to 100% with 1/254 resolution
• Output with positive or negative logic

Output

Control
PW

PWM Duty Register

PWM Counter
PWM Control Register

Com-

pa-

ra-

tor

8b
C
o
u
n
t
e
r

MDB

PWMDT:

PWMCNT:
PWMCTL:

MCLK/16

1
2
3
4
5
6
7
8

C
B
A

MCLK
MCLK/4

ACLK
ACLK/4
ACLK/8
ACLK/16
ACLK/128

Compare match

P
W
M
D
T

P
W
M
D
T
B

PWMCNT

Load

CNTCK

PWMCTL

SSEL2
SSEL1
SSEL0
CMPM

OS
OE

PWMDTB: PWM Duty Buffer

8

MSB

LSB

Figure 10.18: Block Diagram of PWM Timer



Timers MSP430 Family

10-36

10

10.4.1 Operation

The operation of the PWM timer is described with the output polarity control signal OS
reset. The value of the PWMDT register represents the number of clock pulses when
PWM output is high.

When OE = 0, the timer count is held at 00h and the PWM output is reset. Any value
written into the PWMDT becomes valid immediately.

When OE = 1, the timer counter begins incrementing, and the PWM output goes High
(situation b in figure).

When the count reaches the PWMDT value, the PWM output goes Low (situation c in
figure) with the next clock pulse.

If the PWMDT value is changed (by writing the data M in figure), the new value becomes
valid after the timer count changes from FDh to 00h (situation d in figure)

OE

PWMCNT (a) 00 (b) 01 02 N (d) 00 01

H'FF N (d) M
(c)

PWMDT

N - 1 N + 1

N written in DTR M written in DTR

(a)

(e)

(b) (c)*

*

* Used for port 9 input/output: state depends on values in data register and data direction register

(OS="0")

PWM output:

(OS="1")

FDh

CNTCK

Figure 10.19: PWM timing scheme

The control flag OS in the PWMCTL register defines the polarity of the PWM output.

When OS=0, value in the PWMDT register represents the number of PWM counter
clock pulses where the PWM output is set.



MSP430 Family Timers

10-37

10

When OS=1, value in the output polarity is inverted and the PWMDT register represents
the number of PWM counter clock pulses where the PWM output is reset.

10.4.2 PWM Register Descriptions

The PWM timer module is controlled using access via the 8-bit MDB structure and MAB.
It should be accessed using byte instructions.

Register short form Register type Address Initial State

PWM timer control register PWMCTL.1 R/W 58h reset
PWM duty buffer PWMDTB.1 R/W 59h reset
PWM duty register PWMDTR.1 R/W 5Ah reset
PWM timer counter PWMCNT.1 R/(W)* 5Bh reset
PWM timer control register PWMCTL.2 R/W 5Ch reset
PWM duty buffer PWMDTB.2 R/W 5Dh reset
PWM duty register PWMDTR.2 R/W 5Eh reset
PWM timer counter PWMCNT.2 R/(W)* 5Fh reset

Note: Changing the timer counter

The timer counters are read/write registers, but the write function is for test
purposes only.
Application programs should never write to these registers.

Timer Counter PWMCNT

7 0

PWMCNT
05Bh or 05Fh

2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

The PWM timer counter PWMCNT is an 8-bit up-counter. When the output enable bit
OE in the timer control register PWMCTL is set, the timer counter starts counting pulses
of an internal clock source selected by clock select bits 2 to 0 (SSEL2 to SSEL0). After
counting from 00h to FDh, the timer counter repeats from 00h.

The PWM timer counters can be read and written, but the write function is for test
purposes only. Application software should never write to the PW timer counter,
because this may have unpredictable effects.

The PWM timer counters are initialized to 00h at a PUC, and when the OE bit is cleared.



Timers MSP430 Family

10-38

10

Duty Buffer Register PWMDTB

7 0

PWMDTB
059h or 05Dh

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

The duty buffer register holds the value for the duty factor. This duty factor is written into
the duty register when the timer counter changes from FDh to 00h.

The duty buffer register PWMDTB is initialized to 00h at a reset and in the OSCOff
mode.

Note: Changing the PWM duty factor

Changing the duty factor of the PWM should be done only by writing the new
value into the PWM duty buffer PWMDTB. Any write access directly to the duty
register can result in a random duty cycle during the running period. The next
period will run with the new duty factor now contained in the duty buffer.

Duty Register PWMDT

7 0

PWMDT

rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1

2 2 2 2 2 2 2 27 6 5 4 3 2 1 0

05Ah or 05Eh

The duty register specifies the duty factor of the output pulse. Any duty factor from 0 to
100% can be selected, with a resolution of 1/254. Writing 0h in the PWMDT gives a 0%
duty factor; writing 127 (07Fh) gives a 50% duty factor; writing 254 (0FEh) gives a 100%
duty factor.

The timer count is continually compared with the duty register's contents. If the PWMDT
value is not 0, the PWM output signal is set when the count increments from 00h to 01h.
When the count increments to the PWMDT value, the PWM output returns to 0. If the
PWMDT value is 0 (duty factor 0%), the PWM output remains constant at 0.

The PWMDT is double-buffered. A new value written in the PWMDTB while the timer
counter is running does not become valid until after the count changes from FDh to 00h.
After the PUC of the OE bit is reset the timer counter is stopped and new values
become valid as soon as written. When the PWMDT is read, the value read is the
currently valid value.

The duty register PWMDT is initialized to 0FFh at a reset and in the OSCOff mode.



MSP430 Family Timers

10-39

10

PWM Timer Control Register PWMCTL

7 0

rw-0 rw-0 rw-0 rw-0 r rw-0 rw-0 rw-0

PWMCTL SSEL2 SSEL1 SSEL0 CMPM OS OE
058h or 05Ch

The PWM control register is an 8-bit readable/writeable register that selects the clock
source and controls the PWM outputs.

Bit 0: Output Enable (OE): This bit enables the PWM counter and the PWM output.
OE = 0: PWM output is disabled. PWMTC is cleared to 00h and stopped.
OE = 1 PWM output is enabled.  PWMTC runs.

Bit 1: Output Select (OS): This bit selects a true or inverted signal for the PWM
output.
OS =0 Positive logic; positive going PWM pulse, 1 = High (Initial value)
OS =1 Negative logic; negative going PWM pulse, 1 = Low

Bits 2 and 7:  Reserved: These bits cannot be modified and are always read as 0.

Bit 3: CMPM: This bit is of read-only type. The output of the compare match signal
can be detected. It is read as '1' as long as the timer counter PWMCNT and
the duty register PWMDT are identical.

Bits 4 - 6: Clock Select: These bits select one of eight clock sources obtained by dividing
the system clock MCLK or the auxiliary clock ACLK.

Bit 6
SSEL2

Bit 5
SSEL1

Bit 4
SSEL0 Clock source

0
0
0
0
1
1
1
1

0
0

0
0

1
1

1
1

0
1
0
1
0
1
0
1

MCLK
MCLK/4
MCLK/16
ACLK
ACLK/4
ACLK/8
ACLK/16
ACLK/128

From the clock source frequency, the resolution, period, and frequency of the PWM
output can be calculated.

Resolution = 1/clock source frequency
PWM period = resolution x 254 = 254 / clock source frequency
PWM frequency = 1/PWM period = clock source frequency / 254
Duty cycle = PWMDT/254



Timers MSP430 Family

10-40

10



MSP430 Family Timer_A

11-1

11

11 Timer_A

This section describes the basic functions of a the general purpose 16-bit Timer_A in
MSP430 based system.

Topic Page

11.1 Operation of Timer_A 11-3

11.2 Registers of Timer_A 11-17

11.3 Timer_A in Applications 11-28

11.4 Timer_A special conditions 11-38



Timer_A MSP430 Family

11-2

11



MSP430 Family Timer_A

11-3

11

11.1 Operation of Timer_A

The major blocks of the 16-bit Timer_A are:

• a timer which can count continuously up to a predefined value, count up to a
predefined value and down back to zero; the timer can also be stopped

• the clock source of the timer can be selected by software
• the selected clock source can be divided by one, two, four or eight
• five capture/compare registers, each with an individual capture event: two capture

signals controlled by hardware or SW
• five output modules, supporting pulse-width modulation requirements.

The Timer_A is configured by means of the bits in the timer control register TACTL. This
register defines the basic operation of the 16-bit timer. The input clock source - with its
original frequency or pre-divided - and four different operating modes can be selected.
Additionally, a clear function and the timer overflow interrupt control bits are included. A
timer overflow is defined if the timer counts towards 0000h. This definition is
independent of whether the timer counts up or down.

The five capture/compare registers operate identically, and are individually configurable
with their control registers.



Timer_A MSP430 Family

11-4

11

15 0

POR/CLR

Timer Clock

Set_TAIFGCarry/Zero

Data

Equ0

32kHz to 8MHz

TACLK

MCLK

ACLK

SSEL1 SSEL0

0

1

2

3
INCLK

ID0ID1 MC0MC1

Input

Divider

16-bit Timer
Clk

RC

Mode

Control

15 0

Capture/CompareCapture

CCI0

CCIS00

CCM01 CCM00

0

1

2

3

CCIS01

15 0

Register CCR0

OM01 OM00OM02

Out0

EQU0

CCI0A

CCI0B

VCC

GND
Capture

Mode

Comparator 0

Output Unit0

 Timer Bus

16-bit  Timer

Capture/Compare Reg. CCR0

15 0

Capture/Compare

CCI1

CCIS10

CCM11 CCM10

0

1

2

3

CCIS11

15 0

Register CCR1

OM11 OM10OM12

Out1

EQU1

CCI1A

CCI1B

VCC

GND
Capture

Mode

Comparator 1

Output Unit1

Capture/Compare Reg. CCR1

Capture

15 0

Capture/Compare

CCI2

CCIS20

CCM21 CCM20

0

1

2

3

CCIS21

15 0

Register CCR2

OM21 OM20OM22

Out2

EQU2

CCI2A

CCI2B

VCC

GND
Capture

Mode

Comparator 2

Output Unit2

Capture/Compare Reg. CCR2

Capture

15 0

Capture/Compare

CCI3

CCIS30

CCM31 CCM30

0

1

2

3

CCIS31

15 0

Register CCR3

OM31 OM30OM32

Out3

EQU3

CCI3A

CCI3B

VCC

GND
Capture

Mode

Comparator 3

Output Unit3

Capture/Compare Reg. CCR3

Capture

15 0

Capture/Compare

CCI4

CCIS40

CCM41 CCM40

0

1

2

3

CCIS41

15 0

Register CCR4

OM41 OM40OM42

Out4

EQU4

CCI4A

CCI4B

VCC

GND
Capture

Mode

Comparator 4

Output Unit3

Capture/Compare Reg. CCR4

Capture

Figure 11.1:  Schematic of Timer_A



MSP430 Family Timer_A

11-5

11

11.1.1 Timer Operation

Four modes are provided to run the 16-bit timer and are defined with two control bits,
MC1 and MC0, in the control register TACTL, plus the signal EQU0 which is the output
of the comparator in the capture/compare 0 block. The clock source of the timer is
selected via two bits - SSEL1 and SSEL0 - in the control register TACTL. The selected
clock source is passed directly to the 16-bit timer or divided by 2, 4 or 8. The source
signal can be supplied from internal clocks, or from outside.

Mode

Control

16-bit Timer
Clk

Input

Divider

150

POR/CLR

Timer Clock

Set_TAIFGCarry/Zero

Data
 

Equ0

Stop Mode

Up Mode

Continuous Mode

0
1/2

1/4

1/8

32kHz to 8MHz

Up/Down Mode

TACLK

MCLK

ACLK

SSEL1 SSEL0

0

1

2

3
INCLK

RC

ID0ID1

0 Pass

0 1

1 0

1 1

0

MC0MC1

0

0 1

1 0

1 1

Figure 11.2: Schematic of 16-bit Timer

Clock Source Select and Input Divider

The clock source is selected by two control bits, SSEL0 and SSEL1. The output of the
multiplexer directly proceeds from the previous selected signal and its level, to the new
selected signal and its level. Short intermediate states of the two control bits can select
any of the sources applied to the multiplexer. The input divider can receive additional
clocks when the clock source is changed. The input divider is reset with POR signal -
when VCC is applied or a reset condition at RST/NMI pin is detected - or when the timer
is reset via bit CLR. The CLR bit is located in the timer control register TACTL. The input
divider remains in its existing state when the timer is modified - even if zero is written to
the timer. In normal operation, the existing state of the input divider is not visible for
software.



Timer_A MSP430 Family

11-6

11

Input Divider

16-bit Timer Clock

 

TACLK

MCLK

ACLK

SSEL1 SSEL0

0

1

2

3
INCLK

POR

0
1/2

1/4

1/8

ID0ID1

0 Pass

0 1

1 0

1 1

CLR

T Q
C

T Q
C

T Q
C

Figure 11.3: Schematic of Clock Source Select and Input Divider

Mode Control and 16-bit Timer

The 16-bit timer is incremented or decremented with each rising clock signal. It can be
read and written directly from the software, via standard access to peripheral modules.
The different modes are selected with bits MC1 and MC0.

Mode

Control

16-bit Timer
Clk

15 0

POR

Timer Clock

Set_TAIFGCarry/Zero

Data

Equ0

Stop Mode

Up Mode

Continuous Mode

Up/Down Mode

RC

0

MC0MC1

0

0 1

1 0

1 1

Figure 11.4: Schematic of Timer

During the low state of the timer clock, all operations are prepared which are
executed with the following positive edge of the timer clock. Most of the special
conditions that are discussed separately are based on this situation. An example of
this feature is that a compare fails, if the counter has been already counted the
value X and later the capture/compare register is also loaded with this data X.



MSP430 Family Timer_A

11-7

11

Four timer operating modes are provided:

Mode Control: Mode Description

MC1 MC0
0 0 Stop Timer is halted
0 1 Up Timer counts upwards until value is equal to

value of Compare Register 0
1 0 Continuous Timer counts upwards continuously
1 1 Up/Down Timer counts up until the timer’s value is equal

to Compare Reg. 0 and then down to zero

Stop Mode
The timer is halted. When released, it counts according to the selected mode, starting
from the actual content. The count direction is the same as when stopped. Nothing is
reset, the present contents of all registers being used.

UP Mode
The counter counts up to the content of the compare register CCR0. The timer starts
counting from the existing value in the timer register. When the timer value and the
value of the compare register CCR0 are equal, the timer is reset and restarts counting
from zero.

0FFFFh

0h

CCR0

The compare register CCR0 works as the period register in the ‘Up Mode’. The counter
returns to zero with the next clock when the timer data are equal or greater than the
CCR0 data.



Timer_A MSP430 Family

11-8

11

1h 0h0hCCR0-1 CCR0CCR0-1 1hTimer

Clock
Timer

TAIFG
Set flag

CCIFG0
Set flag

CCR0

The flag CCIFG0 is set when the timer becomes equal to the CCR0 value. The TAIFG
flag is set when the timer counts from CCR0 to zero. All interrupt flags are set
independently of the corresponding interrupt enable bit.
An interrupt is requested if the corresponding interrupt enable bit is set and the general
interrupt enable bit is set.

Continuous Mode
The timer starts counting from the present value in the timer register. The counter
counts up to 0FFFFh and restarts counting from zero.

0FFFFh

0h

The Continuous Mode is used if more than one timing is needed. The interrupt handler
adds to the corresponding compare register CCRx, the time difference from the present
time (corresponding data in CCRx), to the time the next interrupt is needed.

1hFFFF 0h0hFFFE FFFFFFFE 1hTimer

Clock
Timer

Flag TAIFG
Set Int.



MSP430 Family Timer_A

11-9

11

The TAIFG flag is set when the timer counts from 0FFFFh to zero. The interrupt flag is
set independently of the corresponding interrupt enable bit. An interrupt is requested if
the corresponding interrupt enable bit is set, and the general interrupt enable bit is set.
The capture/compare register CCR0 works the same way as the other compare
registers in ‘Continuous Mode’.

UP/DOWN Mode
The timer counts up to the content of the compare register CCR0. Then the count
direction is reversed, and the timer counts down to zero.

CCR0

0h

The count direction is latched in a flip-flop FF. The FF is set at 0000h to have the UP
condition for the timer, and is reset when the timer value is equal to CCR0, to have the
DOWN condition for the timer latched.
The period is defined by the compare register CCR0, and is twice the value in the CCR0
register.

CCR0 0hCCR0-1 1hTimer

Clock
Timer

CCR0-1 CCR0-2 1h2h

DOWN
UP/

CCIFG0
Set

TAIFG
Set

The interrupt flag CCIFG0 is set when the timer has counted up from ‘CCR-1’ to ‘CCR0’.
The interrupt flag TAIFG is set when the timer has counted down from 0001h to 0000h.



Timer_A MSP430 Family

11-10

11

The Capture/Compare Block

Five identical blocks provide flexible control of real time processing. Any one of the block
registers may be used to capture the timer data at the applied event, or for the
generation of time intervals. Each time a capture is done or a time interval is completed,
interrupts are generated from the appropriate capture/compare block - if the
corresponding interrupt is enabled. The mode bit CAPx in the control word CCTLx
selects compare (CAPx is reset) or capture (CAPx is set) operation. The capture mode
bits CCMx1 and CCMx0 in the control word CCTLx define under which conditions the
capture function is performed - if no capture, capture on the leading edge, the trailing
edge or at both edges is executed.

Both the interrupt enable bit CCIEx and the interrupt flag CCIFGx are used for capture
and compare modes. The CCIFG is set on a capture or compare event. The control bit
CAPx defines if it is used for capture or compare.
The capture inputs CCIxA and CCIxB are connected to external pins or internal signals.
Different MSP430 devices will have different signals connected to CCIxA and CCIxB.

to Port0

15 0

Capture/Compare Reg. CCRx
Capture

Comparator x

Overflow x
Logic

Disabled
Pos. Edge
Neg. Edge
Both Edges

 Timer Bus

015

EQx

Set_CCIFGx

1 1
01

0 1
0 0

Capture

Mode

CCIx

CCISx0

CCMx1 CCMx0

2

3

CCISx1

0

1

CAPx

CCIxB

VCC

GND

CCIxA

CAPx

0

1

COVx

SCCIx
EN

A
Y

Figure 11.5: Capture/Compare Block

The source of the input signal to the capture logic can be selected by two control bits
CCISx1 and CCISx0. It can be read directly by the software via bit CCIx or synchronized
with the compare signal EQUx. The synchronized bit SCCIx supports serial protocol
software handlers. The capture signal can be asynchronous related to the timer clock.
Different application situations are supported by the possibility of using the non-
synchronized or the synchronized capture signals.



MSP430 Family Timer_A

11-11

11

Capture

Disabled
Pos. Edge
Neg. Edge
Both Edges1 1

01
0 1
0 0

Capture

Mode

CCMx1 CCMx0

CMPx

Timer

Clock

1

0

Set_CCIFGx

Synchronize

Capture SCSx

CCISx0

2

3

CCISx1

0

1CCIxB

VCC

GND

CCIxA

CAPx

0

1EQUx

CCIx

SCCIx
EN

A
Y

The capture signal that sets the capture/compare interrupt flag, and stores the timer
value into the capture register, is synchronized with the timer clock. It is synchronized to
avoid race conditions between the timer data and the capture signal. The synchronized
capture signal bit SCSx in the capture/compare control register CCTLx selects the mode
of the capture signal.

n-1n-2Timer

Clock
Timer

n n+1

CCIx

CCIFGx
Set

n+2 n+3 n+4 n+5 n+6

Capture

Applications with slow timer clock are supported using the non-synchronized capture
signal. A capture event can have race conditions versus the timer clock, and this results
in invalid capture data. The software validates the data and corrects it.



Timer_A MSP430 Family

11-12

11

; Software example for the handling of asynchronous capture signals
;
; The data of the capture/compare register CCRx are taken by the software
; in the according interrupt routine - they are taken only after a CCRIFG
; was set. The timer clock is much slower than the system clock MCLK
;
CCRx_Int_hand ... ; Start of interrupt handler

...

...
CMP &CCRx,&TAR ; Test if the data CCRX = TAR
JEQ Data_Valid
MOV &TAR,&CCRx ; The data in CCRx is wrong,

; use the timer data
Data_Valid ... ... ; The data in CCRx are valid

...

...
RETI

;

11.1.2 The Capture Mode

The capture mode is selected if the mode bit CAPx - located in the control word CCTLx -
is set. The capture mode is used for the accurate fixing of time events. This may be
used for speed computations or time measurements. The timer value is copied into the
capture register CCRx if the selected edge (positive, negative or both) of the input signal
occurs at the selected input pin. Three individual sources can be selected - CCIxA,
CCIxB or from the CPU/software via the bits CCISx1/CCISx0 in the capture/compare
control register CCTLx.

If a capture was done:

• the interrupt flag CCIFGx - located in the control word CCTLx - is set
• an interrupt is requested, if both interrupt enable bits CCIEx and GIE are set

The capture/compare register CCRx should be accessed with word instructions. It holds
the last timer value that was copied to it. An overflow logic is provided. It indicates with
its reset state that the capture data were taken before another sub-sequential capture
was done. The overflow bit COVx in the register CCTLx is set when a second capture
data is latched before the capture/compare register was read successfully. This allows
activities for getting back into the lost synchronization.
The capture taken event is reset only if the captured data are completely read before
another capture occurred. The overflow bit is set if the read operation is not completed.



MSP430 Family Timer_A

11-13

11

No

Capture

taken

Capture

taken

Read

Capture

taken

Second

Capture

taken

capture capture read

capture

capture

clear bit COV

in register CCTL

idle

idle

capture read & no capture

COV = 1

The overflow bit COVx needs to be reset by software.

; Software example for the handling of captured data looking for overflow
; condition
;
; The data of the capture/compare register CCRx are taken by the software
; and immediately with the next instruction the overflow bit is tested
; and a decision is made to proceed regularly or with an error handler
;
CCRx_Int_hand ... ; Start of handler Interrupt

...

...
MOV &CCRx,RAM_Buffer
BIT #COV,&CCTLx
JNZ Overflow_Hand
...
...
...
RETI

Overflow_Hand BIC #COV,&CCTLx ; reset capture overflow flag
; get back to lost synchronization

...

...
; RETI

Note: Capture with Timer halted

Capture should be stopped when the timer is halted. The sequence should be:
stop capturing, and then stop the timer. When the capture function is restarted
the sequence should be: start capturing, and then start the timer.



Timer_A MSP430 Family

11-14

11

11.1.3 The Compare Mode

The compare mode is selected if bit CAPx is reset. The bit CAPx is located in the control
word CCTLx. All circuitry of the capture hardware is inactive. If the timer becomes equal
to the value in the Compare Register x then:

• the Interrupt Flag CCIFGx located in the control word CCTLx is set
• interrupt is requested if the Interrupt Enable Bit CCIEx and GIE bit are set
• the signal EQUx is output to the output unit OUx. Depending on the selected output

mode this signal sets, resets or toggles the output OUTx (if OUTMODx > 0).

The capture/compare register CCRx should be accessed with word instructions. It holds
the compare value that was written to it. The overflow logic provided for capture mode is
inactive.
The EQU0 signal is true when the timer value is greater or equal to the CCR0 value.
The EQU1 to EQU4 signals are true when the timer value is equal to the corresponding
CCR1 to CCR4 value.

11.1.4 The Output Unit

The output unit supports applications that uses PWM or Digital-to-Analog conversion
(DAC). The outputs EQU0 and EQUx of the capture/compare registers control the
output logic according to the selected function by three control bits. Five output units
OU0 to OU4 - one for each capture/compare block - are implemented. The control bits
OMx0, OMx1 and OMx2 are located in the Control Register CCTLx.

0
0 0

OUTx

OMx1 OMx0OMx2

Outx signal

EQU0

EQUx

0
0

0
0

Set, EQUx sets Outx signal clock synchron with timer clock

PWM Toggle/Reset, EQUx toggles Outx signal, reset with EQU0, clock sync. with timer clock

PWM Set/Reset, EQUx sets Outx signal, reset with EQU0, clock synchron with timer clock

Set

Reset

D Q

OUTx

1
1

1
1

1
1

0
0

1
1

0

1

1

0

0

1

1 Reset, EQUx resets Outx signal clock synchron with timer clock

PWM Toggle/Reset, EQUx toggles Outx signal, set with EQU0, clock synchron with timer clock

PWM set/Reset, EQUx reset Outx signal, set with EQU0, clock synchron with timer clock

Output Mode, Outx signal is set according to Outx bit

Toggle, EQUx toggles Outx signal, clock synchron with timer clock

Timer Clock

POR
CLR in TACTL

Zero

Figure 11.6: Output Unit



MSP430 Family Timer_A

11-15

11

The control bit OUTx determines the Outx signal if the output mode 0 is selected by
OMx0, OMx1 and OMx2. The output signal starts with the actual level independent of
the selected mode.

UP Mode
The Outx signal is changed when the timer counts up to CCRx, and when the timer
counts from CCR0 to zero. The Outx signal is modified according to the selected output
mode.

0

3

2

CCR0=3
CCR1=2

0

1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Out1

Figure 11.7: Output Unit: Example Up-Mode and Output Mode 3



Timer_A MSP430 Family

11-16

11

Continuous Mode
The Outx signal is changed when the timer counts up to CCRx and when the timer
counts up to CCR0. The Outx signal is modified according to the selected output mode.

0FFFFh

0

2

CCR0=3
CCR1=2

0

1

0 1 2 3

0FFFE

Out1

3

0FFFEh

0FFFF
0 1 2 3

0FFFE
0FFFF

0 1 2 3

0FFFE
0FFFF

0 1

Figure 11.8: Output Unit: Example Continuous Mode and Output Mode 3

UP/DOWN Mode
The Outx signal is changed when the timer counts up to CCRx, and when the timer
counts down to CCRx. The Outx signal is modified according to the selected output
mode.

0

3

2

CCR0=3
CCR1=2

1

0 1 2 3 2 1

Out1

0 1 2 3 2 1 0 1 2 3 2 1 0

Figure 11.9: Output Unit: Example Up/Down Mode and Output Mode 4



MSP430 Family Timer_A

11-17

11

11.2 Registers of Timer_A

The 16-bit Timer_A module hardware is word structured and should be accessed by
word processing instructions.

Register  short form Register type Address Initial state

• Timer_A control register TACTL Type of read/write   160h POR reset
• Timer_A register TAR Type of read/write   170h POR reset
• Cap/Com control register0 CCTL0 Type of read/write   162h POR reset
• Capture/Compare register0 CCR0 Type of read/write   172h POR reset
• Cap/Com control register1 CCTL1 Type of read/write   164h POR reset
• Capture/Compare register1 CCR1 Type of read/write   174h POR reset
• Cap/Com control register2 CCTL2 Type of read/write   166h POR reset
• Capture/Compare register2 CCR2 Type of read/write   176h POR reset
• Cap/Com control register3 CCTL3 Type of read/write   168h POR reset
• Capture/Compare register3 CCR3 Type of read/write   178h POR reset
• Cap/Com control register4 CCTL4 Type of read/write   16Ah POR reset
• Capture/Compare register4 CCR4 Type of read/write   17Ah POR reset
• Interrupt Vector register TAIV Type of read   12Eh (POR reset)

The addresses 16Ch, 16Eh, 17Ch and 17Eh are reserved for future extensions.



Timer_A MSP430 Family

11-18

11

11.2.1 Timer_A Control Register TACTL

All control bits regarding the timer and its operation are located in the timer control
register TACTL. All control bits are reset automatically by the POR signal, but PUC does
not affect them. The control register should be accessed with word instructions.

CLR
IFGIE

015

160h

TACTL

Control
Mode

Divider
Input

Select
Input

unused

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

un-
used

(w)-
(0)

TA-TA-

Bit 0: TAIFG: This flag indicates a timer overflow event.
UP mode: TAIFG is set if the timer counts from CCR0

value to 0000h.
Continuous mode: TAIFG is set if the timer counts from

0FFFFh to 0000h.
UP/DOWN mode:TAIFG is set if the timer counts down to

0000h.

Bit 1: Timer Overflow Interrupt Enable TAIE bit. An interrupt request
from the timer overflow bit is enabled if set, and it is disabled if
reset.

Bit 2: Timer Clear CLR bit. The timer and the input divider are reset
after POR, or if bit CLR is set. The CLR bit is automatically reset
by the hardware and always read as zero. The timer starts
operation with the next valid input edge. The timer starts in an
upward direction if it is not halted by cleared mode control bits.

Bit 3: Not used

Bit 4 to 5: Mode Control Description

0

MC1 MC0

0 1

1

11

0

Count Mode Comment, Timer ...

Stop is halted

Up to CCR0 counts up to CCR0 and restarts at 0

Cont. Up counts up cont. all 65536 steps

Up/Down counts up to CCR0, down to 0,.....

0

Bit 6 to 7: Input Divider control bits

Pass Input signal is passed to the timer

/2 Input signal is divided by two

/4 Input signal is divided by four

/8 Input signal is divided by eight

0 0

ID1 ID0

0 1

1

11

0

Operation Comment



MSP430 Family Timer_A

11-19

11

Bit 8 to 10: Select source of timer input clock signal - preprocessed in the
Input Divider

0 TACLK

Auxillary clock ACLK is used

1

ACLK

System clock MCLK is used

The signal at dedicated ext. pin is used

INCLK See device description

Reserved

SSEL1 SSEL0

0 1

1

11

0

X

O/P signal Comment

X

0
SSEL2

0

0

0

1

MCLK

-----

Bit 11 to 15: Unused

Note: Modify Timer_A
Any write to the timer register TAR when it is operating and ACLK or external
clock TACLK is selected can result in unpredictable results. The asynchronous
clocks - MCLK used by the CPU and the timer clock can have critical race
conditions.

Note: Changing of Timer_A Control bits

If the operation of the timer is modified by the control bits in the TACTL control
register, the timer should be halted during this modification. The critical
modifications are the input select bits, the input divider bits, and the timer clear
bit. Asynchronous input clock situations and system clock (used by the software)
can get into race conditions were the timer reacts falsely.
The recommended instruction flow is:

1. Modify the control register and stop the timer.

2. Start the timer operation.

E.G.: MOV #0286h,&TACTL ; ACLK/8, timer stopped, timer cleared

BIS #10h,&TACTL ; Start timer with continuous up mode



Timer_A MSP430 Family

11-20

11

11.2.2 Capture/Compare Control Register CCTL

Each Capture/Compare block has its own control word CCTLx.

0

162h

CCTLx

rw-

15

un-
SCS OUTMODx

(0)
rw-
(0)

CAP
INPUT

SELECT
CAPTURE

MODE

rrw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

rw-
(0)

CCIFGCOVOUTCCICCIE

16Eh

to
rw-
(0)

SCCI
used

POR resets all bits of CCTLx, PUC does not affect them.

Bit 0: Capture/compare interrupt flag CCIFGx.
Capture Mode: If set, it indicates a timer value was captured in

the register CCRx.
Compare Mode:If set, it indicates timer value was equal to the

data in the compare register CCRx.
CCIFG0 flag:

CCIFG0 is automatically reset when the
interrupt request was accepted according to the
interrupt scheme of the MSP430 family.

CCIFG1 to CCIFG4 flags:
The flag which determines the actual interrupt
vector word is automatically reset after the TAIV
word is read. No vector word is generated if the
interrupt enable bit is reset but the flag may be
set independently. The flags CCIFG1 to
CCIFG4 need to be reset by software.

Bit 1: Capture overflow flag COV.
Compare mode selected, CAP = 0:

The capture signal generation is reset. No
capture event will set COV bit.

Capture mode selected, CAP = 1:
The overflow flag COV is set if a second
capture is done before the capture register is
read. The overflow bit supports software to
detect a second capture operation before the
previous data are read from capture register.
The overflow flag is not reset by reading the
capture register.



MSP430 Family Timer_A

11-21

11

Bit 2: The OUTx bit is at the corresponding output if OUTMODx is 0
(output only mode).

Bit3: Capture/Compare Input Signal CCIx:
Capture Mode: The selected input signal (CCIxA, CCIxB, VCC

or GND) can be read.
Compare Mode: CCI is reset

Bit 4: Interrupt Enable CCIEx: Enables or disables the interrupt
request signal of capture/compare block x. Interrupt request is
active if enable bit is set, the flag CCIFGx is set and GIE is set.
0: Interrupt disabled 1: Interrupt enabled

Bit 5 to 7: Output Mode Description
0 Output only Data of OUTx bit determines Outx

signal.
1 Set Comp. signal EQUx sets Outx signal
2 PWM Toggle/Reset Comp. signal EQUx toggles Outx

signal, EQU0 resets Outx signal
3 PWM Set/Reset Comp. signal EQUx sets Outx signal,

EQU0 resets Outx signal
4 Toggle Comp. signal EQUx toggles Outx signal
5 Reset Comp. signal EQUx resets Outx signal
6 PWM Toggle/Set Comp. signal EQUx toggles Outx

signal, EQU0 sets Outx signal
7 PWM Reset/Set Comp. signal EQUx resets Outx signal,

EQU0 sets Outx signal

Bit 8: CAP: Defines if the capture/compare block and associated
interrupt block acts in capture or compare function.
0: Compare Mode 1: Capture Mode

Bit 9: read only, always read as 0.
Bit 10: Capture/Compare Input Signal SCCIx, synchronized with the

compare output EQUx:
The selected input signal (CCIxA, CCIxB, VCC or GND) is
stored into a transparent latch with the comparator’s equal
signal EQUx and can be read.

Bit 11: The capture/compare signal can used in asynchronous mode or
synchronized to the timer clock.
The asynchronous mode (SCS is reset) allows to set the CCIFG
immediately on request and also capture the timer data
immediately. It will be useful if the period of the capture source
is far slower than the timer clock. The data in the capture
register may be wrong if race conditions of timer clock and
capture source occur.
The synchronous mode (SCS is set) is normally used and the
capture data are always valid.
0: asynchronous capture 1: synchronous capture



Timer_A MSP430 Family

11-22

11

Bit 12 to 13: Input Select, CCIS1 and CCIS0.
These two bits define the source which provides the capture
event in capture mode. During compare mode there is no use of
these control bits.
0 Input CCIxA is selected
1 Input CCIxB is selected
2 GND, Low
3 VCC, High

Bit 14 to 15: Capture Description
Mode
0 Disabled The capture mode is disabled
1 Pos. Edge Capture is done with rising edge
2 Neg. Edge Capture is done with falling edge
3 Both Edges Capture is done with rising and falling

edge

Note: Simultaneous capture and capture mode selection

If the operation of the capture/compare block is modified by the
capture/compare bit CAP in the CCRx register from compare to capture mode,
no capture should be done simultaneously. The result in the capture/compare
register is unpredictable.
The recommended instruction flow is:

1. Modify the control register to switch from compare to capture.

2. Capture.

E.G.: BIS #CAP,&CCTL2 ; Select capture with register CCR2

XOR #CCIS1,&CCTL2 ; Software capture: CCIS0 = 0

; Capture Mode = 3



MSP430 Family Timer_A

11-23

11

11.2.3 Timer_A Interrupt Vector Register

Two interrupt vectors are associated with the 16-bit Timer_A module:

• The vector for the capture/compare register CCR0 has the highest priority of all
Timer_A interrupts. The capture/compare register CCR0 can be used to define the
period during the UP-Mode and the UP/DOWN-Mode. It therefore needs the fastest
service.

• The multiplexed vector for the other capture/compare registers. A 16-bit vector
word TAIV indicates the currently highest interrupt.

CCR0 Interrupt vector
The interrupt flag associated with the capture/compare register CCR0 is set if the timer
value is equal to the compare register’s value.

Cap/Com Reg. CCR0 = Timer

Capture

EQ0

QD
CAP

Reset

IRACC, Interrupt_request_accepted

CCIE0

Timer Clock

Set
IRQ, Interrupt_service_requested

Figure 11.10 : Capture/Compare Interrupt Flag

The capture/compare register 0 has the highest interrupt priority, and uses its own
interrupt vector to speed up the real time processing.

Vector word, TAIFG, CCIFG1 to CCIFG4 flags
A vector word is associated with the TAIFG flag and each of the other four
capture/compare registers CCR1 to CCR4, and is additionally combined with a priority
scheme: the flag CCIFGx with the highest priority generates a number from 0 (no flag
set) to 12. This encoded number can be added to the program counter to enter the
associated software according to the corresponding interrupt. The vector word TAIV is a
16-bit word to be added to the program counter (see also SW example).



Timer_A MSP430 Family

11-24

11

Reading the actual vector word TAIV from the vector word register resets the flag
CCIFGx that defines the current vector word.

0

015

12Eh

TAIV
Interrupt vector

r0 r0r0 r0 r0 r0 r0 r0r0 r0 r0 r-(0) r-(0) r-(0) r-(0) r0

00000000000

Interrupt Interrupt Source Short Vector Vector Register
Priority form Address TAIV Contents

Highest Capture/Compare 0 CCIFG0 X N.A.
Capture/Compare 1 CCIFG1 Y 2
Capture/Compare 2 CCIFG2 Y 4
Capture/Compare 3 CCIFG3 Y 6
Capture/Compare 4 CCIFG4 Y 8
Timer Overflow TAIFG Y 10

Lowest Reserved Y 12
No interrupt pending Y 0

An interrupt from the timer is requested by setting of CCIFGx or TAIFG, if CCIEx or
TAIE is set, and the general interrupt enable bit GIE is set. The bit with the highest
priority is requesting the service. When the timer vector word TAIV was accessed the
interrupt service requesting bit (CCIFGx or TAIFG) is reset automatically. The bit with
the next lower priority now defines the timer vector word TAIV. An interrupt is also
requested immediately if any interrupt enable bit (CCIEx or TAIE) is set and the
corresponding interrupt flag was already set.
All interrupt flags CCIFGx and TAIFG are featured with full access by the CPU.

Note: Writing to read only register TAIV

When a write to the vector word register TAIV is done the actual interrupt flag that
determines the vector word is reset. The requesting interrupt event is missed for
later software handling. Additionally, writing to this read only register results in an
increased current consumption as long as the write is active.



MSP430 Family Timer_A

11-25

11

EQ1

CMP1

IRACC

CCIE1
Timer Clock

CCI1
S

S

Sel

R

EQ2

CMP2

IRACC

Timer Clock

CCI2
S

S

Sel

R

EQ3

CMP3

IRACC

Timer Clock

CCI3
S

S

Sel

R

EQ4

CMP4

IRACC

Timer Clock

CCI4
S

S

Sel

R

Priority

and

vector

word

generator

Interrupt_service_request

CCIFG1

CCIFG2

CCIFG3

CCIFG4

CCIE2

CCIE3

CCIE4

Interrupt_vector_address

XXX

IRACC

TAIE
Timer Clock

Timer 'FFFF'
S

Sel

R

TAIFG
Timer= 'CCR0'

S

Figure 11.11 : Schematic of Capture/Compare Interrupt Vector Word

Timer Interrupt Vector Register, Software Example

The software example shows the use of the vector word TAIV and the overhead of the
handling. The numbers at the right margin show the necessary cycles for every
instruction. The example is written for continuous mode: the time difference to the next
interrupt is added to the corresponding compare register.

; Software example for the interrupt part Cycles
;
; Interrupt handler for Capture/Compare Module 0.
; The interrupt flag CCIFG0 is reset automatically
;
TIMMOD0 ... ; Start of handler Interrupt latency 6

RETI 5



Timer_A MSP430 Family

11-26

11

;
; Interrupt handler for Capture/Compare Modules 1 to 4.
; The interrupt flags CCIFGx and TAIFG are reset by hardware
; Only the flag with the highest priority responsible for the
; interrupt vector word is reset.
TIM_HND $ ; Interrupt latency 6

ADD &TAIV,PC ; Add offset to Jump table 3
RETI ; Vector 0: No interrupt 5
JMP TIMMOD1 ; Vector 2: Module 1 2
JMP TIMMOD2 ; Vector 4: Module 2 2
JMP TIMMOD3 ; Vector 6: Module 3 2
JMP TIMMOD4 ; Vector 8: Module 4 2

;
; Module 5. Timer Overflow Handler: the Timer Register is
; expanded into the RAM location TIMEXT (MSBs)
;
TIMOVH ; Vector 12: TIMOV Flag

INC TIMEXT ; Handle Timer Overflow 4
RETI 5

;
TIMMOD2 ; Vector 4: Module 2

ADD #NN,&CCR2 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

;
;
TIMMOD1 ; Vector 2: Module 1

ADD #MM,&CCR1 ; Add time difference 5
... ; Task starts here
RETI ; Back to main program 5

; The Module 3 handler shows a way to look if any other interrupt is
; pending: 5 cycles have to be spent, but 9 cycles may be saved if
; another interrupt is pending
;
TIMMOD3 ; Vector 6: Module 3

ADD #PP,&CCR3 ; Add time difference 5
... ; Task starts here
JMP TIM_HND ; Look for pending intrpts 2

;
.SECT "VECTORS",0FFF0h ; Interrupt Vectors

.WORD TIM_HND ; Vector for Capture/Compare Module 1..4
; and timer overflow TAIFG

.WORD TIMMOD0 ; Vector for Capture/Compare Module 0

If the FLL was turned off, then 2 additional cycles need to be added for synchronous
start of CPU system and system clock MCLK.
The software overhead for the different interrupt sources includes the interrupt latency
and return-from-interrupt cycles (but not the task handling itself):

• Capture/Compare block CCR0 11 cycles
• Capture/Compare blocks CCR1 to CCR4 16 cycles
• Timer Overflow TAIFG 14 cycles



MSP430 Family Timer_A

11-27

11

Timing Limits
With the TAIV register and the above software, the shortest repetitive time distance
tCRmin between two events using a Compare Register is:

tCRmin = ttaskmax + 16 x tcycle

with: ttaskmax Maximum (worst case) time for the task to be done
during the interrupt routine (e.g. incrementing of a
counter)

ttcycle Cycle time of the used system frequency MCLK

The shortest repetitive time distance tCLmin between two events using a capture
register is:

tCLmin = ttaskmax + 16 x tcycle



Timer_A MSP430 Family

11-28

11

11.3 Timer_A in Applications

11.3.1 Timer_A - Use of the UP-Mode

The UP-Mode is used if the period of the timer should be different to 65,536 clock
cycles, which is the period in continuous mode. The capture/compare register CCR0
data is used to define the period of the timer.

Capabilities of output unit OU0
The output unit OU0 works usefully with four modes since CCR0 is also used to define
the period of the timer. The four modes are output mode 0, output mode1, output mode
4 and output mode 5. The other four modes can not be used, since they use the EQU0
signal simultaneously in different ways.

Capabilities of output units OU1 to OU4
The output units OU1 to OU4 and its driving circuits are fully identical - all four have the
same characteristics. Each can operate in the same or a different way.

The mix - to generate signals or to capture timer data - is selected and controlled by the
application software. Examples of the different output mode basic functions are
illustrated in the figure. The examples use output OUT1 for demonstration purpose.

Timer: The timer repeatedly runs from 0 up to the value of CCR0.

Output mode 0: The output signal OUTx is defined by the OUTx bit in the control register
CCTLx of each capture/compare block, independently of any timing
function and completely under software control.

Output mode 1: The output is set when the timer value becomes equal to the
capture/compare data CCR1. The interrupt caused by the EQU0 signal
(CCIFG0) may be used for modifications of the Compare Registers x.

Output mode 2: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. It is reset when timer value is equal to
CCR0 - timer is reset too. This is basically used for PWM functions or
together with other outputs to generate phase relations.

Output mode 3: The output is set when the timer value becomes equal to the
capture/compare data CCR1. It is reset when timer value is equal to
CCR0 - timer is reset too. This is basically used for PWM functions or
together with other outputs to generate phase relations.

Output mode 4: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. The output period is double the period of
the timer’s period. The phase relation to any other output is determined
by selecting the CCRx data.

Output mode 5: The output is reset when the timer value becomes equal to the
capture/compare data CCR1. The interrupt caused by the EQU0 signal
(CINT0) may be used for modifications of the Compare Registers x.



MSP430 Family Timer_A

11-29

11

Output mode 6: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. It is set when timer value becomes equal
to CCR0. This is basically used for PWM functions or together with other
outputs to generate phase relations.

Output mode 7: The output is reset when the timer value becomes equal to the
capture/compare data CCR1. It is set when timer value becomes equal
to CCR0 - timer is reset. This is basically used for PWM functions, or
together with other outputs to generate phase relations.

0FFFFh

0h

CCR0

CCR1

Output Mode 1: Set 

Output Mode 2: PWM Toggle/Reset 

Output Mode 3: PWM Set/Reset 

Output Mode 4: Toggle

Output Mode 5: Reset 

Output Mode 6: PWM Toggle/Set 

Output Mode 7: PWM Reset/Set 

 
EQU0 EQU0EQU1 EQU1 EQU0

Example, EQU1 used

Figure 11.12: Output Unit in Up Mode

11.3.2 Timer_A - Use of the Continuous Mode

The continuous mode is used if the period of the timer of 65,536 clock cycles is
insignificant for the application. A main application of the continuous mode is the
generation oft independent software timings. The capture/compare register CCR0 data
is used the same way like the other four capture/compare registers CCRx.



Timer_A MSP430 Family

11-30

11

All output modes will be useful for various kinds of applications. The feasible output
signals for the output modes are chosen by the output mode bits OMx2 to OMx0 in the
CCTLx register.
The mix - to generate signals or to capture timer data - is selected and controlled by the
application software. Examples of the different output mode basic functions are
illustrated in the succeeding figure. The outputs OUT0 and OUT1 are used for
demonstration purposes only. The data in CCR0 are greater than the data in CCR1.

0FFFFh

0h

CCR0

CCR1

Output Mode 1: Set 

Output Mode 2: PWM Toggle/Reset 

Output Mode 3: PWM Set/Reset 

Output Mode 4: Toggle

Output Mode 5: Reset 

Output Mode 6: PWM Toggle/Set 

Output Mode 7: PWM Reset/Set 

TAOV EQU0EQU1 EQU1 EQU0TAOV
Interrupt Events, Example EQU0/1

Figure 11.13: Output Unit in Continuous Mode

Timer: The timer repeatedly runs from 0 up to FFFF.

Output mode 0: The output signal OUTx is defined by the OUTx bit in the control register
CCTLx of each capture/compare block, independently of any timing
function, and completely under software control.

Output mode 1: The output is set when the timer value becomes equal to the
capture/compare data CCR1. The interrupt caused by the EQU0 signal
(CCIFG0) may be used for modifications of the Compare Registers x.

Output mode 2: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. It is reset when the timer value is equal to
CCR0. This is basically used for pulse generation.



MSP430 Family Timer_A

11-31

11

Output mode 3: The output is set when the timer value becomes equal to the
capture/compare data CCR1. It is reset when the timer value is equal to
CCR0. This is basically used for pulse generation.

Output mode 4: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. The output period is double the period of
the timer’s period. The phase relation to any other output is determined
by selecting the CCRx data.

Output mode 5: The output is reset when the timer value becomes equal to the
capture/compare data CCR1. The interrupt (CCIFG0) caused by the
EQU0 signal may be used for modifications of the Compare Registers x.

Output mode 6: The output is toggled when the timer value becomes equal to the
capture/compare data CCR1. It is set when the timer value is equal to
CCR0. This is basically used for pulse generation.

Output mode 7: The output is reset when the timer value becomes equal to the
capture/compare data CCR1. It is set when the timer value is equal to
CCR0. This is basically used for pulse generation.

Continuous Mode - used for time intervals
The continuous mode can be used to generate easily time intervals for the application
software. Each time the interval is completed, an interrupt is generated if enabled. In the
interrupt routine of this event, the time distance to the next event is added to the
capture/compare register CCRx used for this function. Up to five completely
independent time events can be generated using all five capture/compare blocks.

0FFFFh

0h

Interrupt Events,

CCR0b

Example EQU0

CCR0c

CCR0d

CCR0e

CCR0a

CCR0f

CCR0g

CCR0h

CCR0i

CCR0j

CCR0k

CCR0m

CCR0l

∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t ∆ t

Time intervals can be done also with the other modes were CCR0 is used as the period
register. There handling is more complex since the sum of the old CCRx data and the
new period can be higher than the CCR0 register. When the sum CCRxold plus ∆t is
greater than CRR0 data, the sum must be reduced by CCR0 data for correct time
interval.

11.3.3 Timer_A - Use of the UP/DOWN Mode

The UP/DOWN mode is used if the period of the timer should be different to 65,536
clock cycles and symmetrical pulse waveform generation is needed. The



Timer_A MSP430 Family

11-32

11

capture/compare register CCR0 data is used to define the period of the timer. The
period of the timer is twice the data contained in the CCR0.

Capabilities of output unit OU0
The capture/compare register is used to define the period of the timer. The output unit
OU0 only operates effectively in the output mode 0, 1, 4 and 5. All other modes fail,
since the timer is already controlled by the CCR0 equal signal EQU0.

Capabilities of output units OU1 to OU4
The output units OU1 to OU4 and its driving circuits are fully identical - all four have the
same functions and can operate in different modes.

The mix - to generate signals or to capture timer data - is selected and controlled by the
application software. Examples of the different output mode basic functions are
illustrated in the succeeding figure. Output OUT3 is used for demonstration purpose
only.

Two interrupts are generated during continuous running in the UP/DOWN mode - the
interrupt from the capture/compare block CCR0 and the interrupt from the timer, when
timer is in down phase and reaches zero. Both interrupts can be used to run proper
output pulse modification.



MSP430 Family Timer_A

11-33

11

0FFFFh

0h

CCR0

Output Mode 1: Set 

Output Mode 2: PWM Toggle/Reset 

Output Mode 3: PWM Set/Reset 

Output Mode 4: Toggle

Output Mode 5: Reset 

Output Mode 6: PWM Toggle/Set 

Output Mode 7: PWM Reset/Set 

TIMOV EQU0EQU3 EQU3 TIMOV

Interrupt Events, Examples EQU0, EQU3

CCR3

EQU0EQU3 EQU3
 

Figure 11.14: Output Unit in UP/DOWN Mode(I)

The UP/DOWN mode makes applications possible that enforce the use of "Dead Times"
between the output signals. For example, two outputs driving an H-bridge must never be
high simultaneously to avoid overload conditions. For a short programmable time - the
dead time - both outputs are switched to low. Also the reverse situation is applicable - if
necessary the two outputs may be programmed to be never low simultaneously. In the
example the tdead is:

tdead = ttimer  x (CCR1 - CCR3)

with: tdead Time that both outputs need to be low
ttimer Cycle length of the Timer Register input frequency
CCRx Content of the Compare Register x



Timer_A MSP430 Family

11-34

11

0FFFFh

0h

CCR0

CCR1

Output Mode 3 = 2: PWM Toggle/Reset 

EQU0EQU3 EQU3
 

TAIFG

Interrupt Events, Example EQU1, EQU3

CCR3

EQU0
EQU3 EQU3

 

TAIFG

Output Mode 1 = 6: PWM Toggle/Set 

EQU1 EQU1 EQU1 EQU1

Dead Time

Figure 11.15: Output Unit in UP/DOWN Mode (II)

11.3.4 Timer_A - Capture via Software

Each of the capture/compare registers can be used by the software to get a time stamp.
It can be used for various purposes:

• measure time used by software routines
• measure time between hardware events
• measure the system frequency
• .......

The two bits CCISx1 and CCISx0 and the capture mode selected by the two bits CCMx1
and CCMx0 are use to realize the capture performed by software. The capture mode
can be selected to act on the positive edge, negative edge or both edges of the capture
signal CCIx. The simplest realization is done when the capture mode is selected to
capture on both edges. The capture input signal is selected to be VCC/high or
GND/Low. The bit CCISx1 is set and with the bit CCISx0 the capture signal VCC/high or
GND/Low is selected.



MSP430 Family Timer_A

11-35

11

CCIx

CCISx0

Capture

Both Edges selected 1 1

Capture

Mode

CCIx CCMx1 CCMx0

CMPx
CCISx0

2

3

CCISx1

0

1CCIxB

VCC

GND

CCIxA

Capture

CCISx1

Figure 11.16: Software Capture Example

; Software example to capture data performed by software
;
; The data of the capture/compare register CCRx are taken by the software
; It is assumed that CCMx1, CCMxO and CCISx1 bits are set.
; The bit CCISx0 selects the CCIx signal to be high or low
;
;

...

...
XOR #CCISx0,&CCTLx
...
...
...

11.3.5 Timer_A - Handle asynchronous serial protocol

The serial asynchronous protocol transmits and receives the data with a defined
baudrate. A few different baudrates are defined in the industry. The receive uses the
same or another baudrate as that in transmit. The receive starts with a negative edge of
the signal. The receiver synchronizes itself with this negative edge, and the following bits
are of the selected baudrate.
The transmit feature can be realized by using one compare function to shift data via the
output unit to the selected pin. The baudrate is ensured by reconfiguring the compare
data along with each interrupt. The output unit sets or resets the pin using the mode 1
for set and mode 5 for reset.
The receive feature can be realized by using one capture/compare function to shift data
applied to a pin via the control register’s bit SCCIx into a memory. The receive start time
is recognized by capturing the timer data with the negative edge of the receive signal.



Timer_A MSP430 Family

11-36

11

The same capture/compare block is then selected to compare. The data for compare is
the captured time plus half bit time determined by the baudrate. The first bit is latched
with the first compare event EQUx. The scanning of the following bits is done the same
way with a timing accordingly to the selected baud rate. The interrupt routine associated
with the bit scanning collects all bits of one character for later processing by software.

0

OMx1

OMx0OMx2

0 Set, EQUx sets Outx signal clock synchron with timer clock

1 0
1

1 Reset, EQUx resets Outx signal clock synchron with timer clock

to Port0

15 0

Capture/Compare Reg. CCRx

Capture

Comparator xDisabled
Pos. Edge
Neg. Edge
Both Edges

 Timer Bus

015

EQUx

Set_CCIFGx

1 1
01

0 1
0 0

Capture

Mode

CCIx

CCISx0

CCMx1 CCMx0

2

3

CCISx1

0

1CCIxB

VCC

GND

CCIxA

CAPx

0

1

SCCIx
EN

A
Y

Outx signal
Set

Reset

D Q

 timer clock

Receive Data Path

Transmit Data Path

Overflow x
Logic

CAPx
COVx

Figure 11.17: Timer_A used to handle asynchronous protocol



MSP430 Family Timer_A

11-37

11

One capture/compare block is used when half duplex communication is selected. Two
capture compare blocks are used to perform full duplex mode. In half duplex mode,
receive and transmit should be sequential and use only one data line. In full duplex
mode receive and transmit can be executed in parallel.

URXD Signal

capture
compare

compare
compare

compare
compare

compare
compare. . . . . .

 . . . . .
Receive

compare
compare

. . . . . .
 . . . . .

Transmit

compare
compare

compare
compare

compare
compare

UTXD Signal

capture
compare

Figure 11.18: Timer_A, timing for asynchronous protocol handling



Timer_A MSP430 Family

11-38

11

11.4 Timer_A special conditions

There are some special conditions possible, and these will be discussed in this section.
A basic principle that follows all the timer and compare functions, is that increment or
decrement from the timer register (by a timer clock) is needed to execute the selected
function.

11.4.1 CCR0, used for period register

The compare registers are used for matching with the timer register 180o before the
timer register
increments. When the
CCR0 is used as a
period register, and a
new period is the same
as or greater than the
old period, the timer
runs up to the new data
and needs no special
attention. When the
CCR0 is used as the
period register, and a
new period is less than the old period, the timer is affected with the next positive edge if
the new data was written to the CCR0 during the high phase of the timer clock. The
timer continues to increment for one further leading edge of the timer clock, and is
affected with the second leading timer clock edge if the CCR0 data was written during
the low phase of the timer clock.

0 or n-1nTimer

Clock
Timer

CCR0

n n+1

CCRnewCCRold CCRnewCCRold

Load new CCR0

during high phase of clock

Load new CCR0

during low phase of clock

0

CCR0new=2

CCR0old=5

2

0 1 3

Timer
register

CCR0 loaded with 2

CCR0 25

1

3

5
4

2 4 5

0

0 1 2 0 10 1 32 4 2 0 1

0

CCR0new=2

CCR0old=5

2

0 1 3

Timer
register

CCR0 loaded with 2

CCR0 25

1

3

5
4

2 4 5

0

0 1 2 0 10 1 32 2 0 1

Timer

Clock
Timer

CCR0

0 or n

0

3

2

CCR0new=3

CCR0old=2

0

1

0 1 2 0 1 2 3 0 1 0 12 3

Timer
register Timer loaded with 0

CCR0 2 3



MSP430 Family Timer_A

11-39

11

The previous examples demonstrate the different situations in the UP-Mode. The same
reaction happens in the UP/DOWN-Mode when the timer operates in up-direction. The
timer decrements continuously towards 0 if the period register CCR0 is altered when
direction down is active.

10Timer

Clock
Timer

CCR0

10

CCRnewCCRold=0 CCRnewCCRold=0

Load new CCR0

during high phase of clock

Load new CCR0

during low phase of clock

0 1

0

CCR0new>0CCR0old=0

2

0

Timer
register

CCR0 >00

1

3

5
4

40 32

Timer

Clock
Timer

CCR0

00 0 1

0

CCR0new>0CCR0old=0

2

0

Timer
register

CCR0 >00

1

3

5
4

40 3200

The counter starts this way in Up-Mode and UP/DOWN-Mode.

11.4.2 Start/Stop of the Timer Register

The start of the timer register, and also the stop of the timer register, follow the same
basic rules as the period register CCR0.

MCLK

Clock
Timer

CCR0 StartStop

Timer 10

Stop

2 3 4



Timer_A MSP430 Family

11-40

11

MCLK

Clock
Timer

CCR0 StartStop

Timer 10

Stop

2 3 4

The selected count mode is loaded during the trailing edge of the timer clock. The
following leading edge increments the timer register, if one of the three run modes is
selected. The following leading edge does not further increment the timer register if the
timer register is stopped.

11.4.3 Output Unit0

All output units have identical structures. The inputs use various control signals to define
the specific operation. Two of the control signals are the comparator output
timer-equal-compare register of the related module x (CCRx), and the comparator
output timer-equal-compare register of the module 0 (CCR0). When the module x is the
output unit 0, then not all of the possible operating conditions should be used:

0
0 0

Out0

OMx1 OMx0OMx2

Out0

0
0

0
0

Set, EQU0 sets Out0 signal clock synchron with timer clock

>> uses for toggle and reset the EQU0 signal 

Set

Reset

D Q

Out0

1
1

1
1

1
1

0
0

1
1

0

1

1

0

0

1

1 Reset, EQU0 resets Out0 signal clock synchron with timer clock

Output Mode, Out0 signal is set according to Out0 bit

Toggle, EQU0 toggles Out0 signal, clock synchron with timer clock

Timer Clock

POR
CLR in TACTL

>> uses for set and reset the EQU0 signal 

>> uses for toggle and set the EQU0 signal 

>> uses for set and reset the EQU0 signal 

EQU0

EQU0

Zero

The modes 0, 1, 4 and 5 are recommended.



MSP430 Family USART Peripheral Interface

12-I

12

13

Universal Synchronous Asynchronous
Receive/Transmit USART

This section describes the serial communication interface USART. It has two functions
implemented, to allow serial communication working in different ways. The first function
is the well-known asynchronous communication protocol UART; the second function is
the serial peripheral interface function SPI, which is also widely used. Even if all the
hardware is used in common for both functions, it is described specifically for the
function finally chosen, in the application environment which is normally defined to be
UART or SPI. Nevertheless, with proper software and hardware design, both functions
can be used, one after the other. One bit in the control register defines if the module
operates as UART or SPI.

Topic Page

12  USART Peripheral Interface, UART Mode 12-1

12.1 Asynchronous Operation 12-2

12.2 Interrupt and Control Function 12-10

12.3 Control and Status Register 12-14

12.4 UART Mode, Utilizing Features of low power Modes 12-21

12.5 Baud Rate Considerations 12-24

13 USART Peripheral Interface, SPI Mode 13-1

13.1 USART’s Synchronous Operation 13-2

13.2 Interrupt and Control Function 13-6

13.3 Control and Status Register 13-12



USART Peripheral Interface MSP430 Family

12-II

12

13



MSP430 Family USART Peripheral Interface

12-III

12

13

USART Peripheral Interface

The universal synchronous/asynchronous interface is a serial channel which allows a
serial bit stream of 7 or 8 bits to be shifted into and out of the MSP430, at a programmed
rate, or at a rate defined by an external clock. The USART peripheral interface is built to
support, with one hardware configuration, two different serial protocols: the universal
asynchronous protocol - often simply called RS232 - and the synchronous serial protocol
- usually known as the SPI protocol.

The control bit SYNC in control register UCTL is used to select the required mode:
SYNC = 0: asynchronous - UART - mode selected
SYNC = 1: synchronous - SPI - mode selected.

The USART is connected to the CPU as a byte peripheral module. It connects the
controller to the external system environment by three or four external pins.

Receive Buffer URXBUF

Receive Shift Register

Baud Rate Generator

Transmit Shift
Register

Transmit Buffer UTXBUF

Receive Status

WUT

TXWake

RXE

CKPL

UCLKI

MCLK

ACLK

SSEL1 SSEL0

0

1
2

3
MCLK

Baud Rate Generator

Baud Rate Register UBR

SYNC

Listen
0 1 SOMI

1 0

1 SIMO

0

MM

UCLK
Clock Phase & Polarity

CKPH

UCLKI

UCLKS

SYNC

UCLKS

SYNC

SYNC

URXD

UTXD

SYNC

0

SYNC

STE

Figure 12.1: Block diagram of USART



USART Peripheral Interface MSP430 Family

12-IV

12

13



MSP430 Family USART Peripheral Interface, UART Mode

12-1

12

12 USART Peripheral Interface, UART Mode

The universal synchronous/asynchronous interface is a serial channel which allows a
serial bit stream of 7 or 8 bits to be shifted into and out of the MSP430 at a programmed
rate. The asynchronous mode is selected when the control bit SYNC in the USART
control register UCTL is reset. The USART is connected to the CPU as a byte
peripheral. It connects the controller to the external system environment by three
external pins.

USART’s serial asynchronous communication feature :

•• Asynchronous modes, including Idle line/Address bit communication protocols
•• Two shift registers shift serial data stream into URXD, and out on UTXD
•• Data transmitted/received with LSB first
•• Programmable transmit and receive bit rate
•• Status flags

Receive Buffer URXBUF

Receive Shift Register

Baud Rate Generator

Transmit Shift
Register

Transmit Buffer UTXBUF

Receive Status

WUT

TXWake

RXE

CKPL

UCLKI

MCLK

ACLK

SSEL1 SSEL0

0

1
2

3
MCLK

Baud Rate Generator

Baud Rate Register UBR

Listen
0

1

UCLK
Clock  Polarity

UCLKI

UCLKS

UCLKS

URXD

UTXD

LSB first

SYNC = 0

Figure 12.1: Block diagram of USART - UART mode



USART Peripheral Interface, UART Mode MSP430 Family

12-2

12

12.1 Asynchronous Operation

In the asynchronous mode, the receiver synchronizes itself to frames, but the external
transmitting and receiving devices do not use the same clock source; the baud rate is
generated locally.

12.1.1 Asynchronous Frame Format

The asynchronous frame format consists of a start bit, seven or eight data bits,
even/odd/no parity bit, an address bit in Address bit mode, and one or two stop bits. The
bit period is defined by the selected clock source and the data in the baud rate registers.

[Address bit, MM=1]

[Parity bit, PENA=1]

D0

[8th data bit, CHAR=1]

ST D7D6..............................

[2nd stop bit, SP=1]

Mark

Space
PA SP SP

[optional bit, condition]

AD

Figure 12.2: Asynchronous frame format

The receive (RX) operation is initiated by the receipt of a valid start bit. It consists of a
negative edge at URXD, followed by the taking of a majority vote from three samples,
where 2 of the samples must be zero. These samples occur at n/2-x, n/2 and n/2+x of
BRCLK periods after the negative edge. This sequence provides false start bit rejection,
and also locates the center of bits in the frame, where the bits will be read on a majority
basis. The timing of x is 1/32 to 1/63 times of BRCLK, but at least BRCLK, depending on
the division rate of the baud rate generator.

1 2 3

Falling edge
on URXD

indicates startbit

Majority vote
taken from

URXD data line

1 2

Data bit period = n or n+1 BRCLK periods

BRCLK
H
L

UTXD
H
L

Data bit period = n or n+1 BRCLK periods

URXD
H
L

n/2n/2-x n/2+x n n+1

1 2n-1 n 3

n-1

Figure 12.3: Asynchronous bit format. Example for n or n+1 clock periods



MSP430 Family USART Peripheral Interface, UART Mode

12-3

12

12.1.2 Baud rate generation in asynchronous communication format

The baud rate generation in the MSP430 differs from other standard serial
communication interface implementations.

Standard Baud Rate Generation
The standard implementation uses a prescaler from any clock source and a fixed
second clock divider which is usually a divide by 16.

16bit Prescaler / Divider

15

UBR0 UBR1

0 7 0 7

8 8

Clock1

Select Clock source

BRSCLK
H
L

Start
H
L

BRCLK

BITCLK

BITCLK
H
L

Start

    :
Clockn

    : RC
  :  16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

Take majority vote of receive bit

BRSCLK

Figure 12.4: Standard baudrate generation - other than MSP430

Baudrate = Error!
Using this common scheme to generate the baud rate can not generate baud rates that
are chosen close to the frequency of the prescaler’s input frequency BRCLK. Division
factors of e.g. 18 are not possible, as well as non-integer factors - for example 13.67.

Example 1
Assuming a clock frequency of 32,768Hz for the BRCLK signal, and a required baudrate
of 4800 Baud, the division factor is 6.83. In a standard baud rate generator the minimum
factor is 16 - the crystal’s frequency and the baud rate generation can not meet the
requirements.

Example 2
Assuming a clock frequency of 1.04MHz (32 x 32,768Hz) for BRCLK signal and a
required baudrate of 19 200 Baud, the division factor is 54.61. In a standard baud rate
generator the next factors are 48 (3x16) or 64 (4x16) - the crystal’s frequency and the
baud rate generation can not meet the requirements. The crystal frequency needs to be
selected to meet the communication requirements. Other criteria like current
consumption, simple real-time clock function or system cost constraints can not be
considered to be favorable.



USART Peripheral Interface, UART Mode MSP430 Family

12-4

12

MSP430 Baud Rate Generation
The baud rate generator of the MSP430 uses one prescaler/divider and a modulator.
This combination is used to work properly with crystals whose frequency is not a multiple
of the standard baud rates, but allows the protocol to run at maximum baud rate. Using
this technique, even with a watch crystal (32,768Hz) baudrates up to 4800 (9600) baud
are possible. This gives power advantages, since the selection of sophisticated MSP430
operation in low power mode is possible.

1n/2 n/2-1

15bit Prescaler / Divider

151

UBR0 UBR1

0 7 0 7

Q1  ...................................... Q15

Compare 0 or 1

7 8

Shift Modulation Register Data

Modulation Register UMOD

UCLK

MCLK

ACLK

SSEL1 SSEL0

0

1

2

3
MCLK

BRCLK
H
L

Start
H
L

Counter

BRCLK

BITCLK

BITCLK
H
L

0 7

m

Divide by

0n/2-2

n/2

n/2

n/2-1

12 0
n/2

n/2

n/2-11 0
n/2 n/2-1 n/2 n/2-1

1
1

n(even), m=0
n (odd) or n(even)+m(=1)

n(odd)+m(=1)

Start

INT(n/2), m=0
INT(n/2)+m(=1)

n/2-21

n/2-1

n/2-2

n/2-2

shift_inshift_out

Toggle
FF

Figure 12.5: MSP430 Baud Rate Generation. Example for n or n+1 clock periods

The LSB of the modulation register is used first for modulation - it starts with the start bit.
A set modulation bit increases the division factor by one.

Example 1
Assuming a clock frequency of 32,768Hz for BRCLK signal and a required baudrate of
4800 Baud, the division factor is 6.83. The baud rate generation in the MSP430’s
USART uses a factor of 6 plus the modulation register loaded with 6Fh (0110 1111).
This means the divider runs the following sequence: 7 - 7 - 7 - 7 - 6 - 7 - 7 -6 - ...........
The sequence repeats after all eight bits of the modulator are used.



MSP430 Family USART Peripheral Interface, UART Mode

12-5

12

Example 2
Assuming a clock frequency of 1.04MHz (32 x 32,768Hz) for BRCLK signal, and a
required baudrate of 19 200 Baud, the division factor is 54.61 The baud rate generation
in the MSP430’s USART uses a factor of 54 (36h) plus the modulation register loaded
with 0D5h. This means the divider runs the following sequence: 55 - 54 - 55 - 54 - 55 -
54 - 55 -55 - ........ The sequence repeats after all eight bits of the modulator are used.

The standard baud rate data needed for the baud rate registers and the modulation
register are listed for the watch crystal 32,768Hz (ACLK) and MCLK, assumed to be
32 times the ACLK frequency. The error listed is calculated for the receive path. In
addition to this error, the synchronization error should also be considered.

Baud rate
UBR1

Divide by

UBR0 UMOD

75

110

150

300

600

1200

2400

4800

9600

19 200

38 400

76 800

115 200

ACLK MCLK

436.91

297.89

218.45

109.23

54.61

27.31

13.65

6.83

3.41

13981

9532.51

6990.5

3495.25

1747.63

873.81

436.91

218.45

109.23

54.61

27.31

13.65

9.10

ACLK

UBR1 UBR0 UMOD

MCLK (= 32 x ACLK)
error
max.

error
max.

1 B4

1 29

0 DA

0 6D

0 36

0 1B

0 0D

0 06

0 03

01 B4

03 69

0 DA

0 6D

0 36

0 1B

0 09

36 9D

25 3C

1B 4E

0D A7

06 D3

0 0D

FF

FF

55

22

D5

03

6B

6F

4A

-9/11

-6/3

-4/3

-1/1

-.3/.7

0/.4

0/.5

-.1/.3

-21/12

FF

FF

55

03

6B

03

08

FF

FF

FF

00

FF

6B

0/.3

0/.3

0/.4

-.4/1

-.2/2

-4/3

-5/7

-6/3

0/.3

-.1/0

0/.1

0/.1

0/.1

%%

Table 12.1: Commonly used Baud Rates, Baudrate data and errorsCommonly

The maximum error is calculated for the receive mode and the transmit mode. The error
in the receive mode is the accumulating timing error versus the ideal scanning time in
the middle of each bit. The transmit error is the accumulating timing error versus the
ideal time of the bit period.

The maximum frequency of MCLK is noted in the device data sheet and can exceed the
example frequency.



USART Peripheral Interface, UART Mode MSP430 Family

12-6

12

12.1.3 Asynchronous Communication Formats

The USART module supports two multiprocessor communication modes when the
asynchronous mode is used. These formats can be used to transfer information
between many microcomputers on the same serial link. Information is transferred as a
block of frames from a particular source to one or more destinations. The USART has
features to identify the start of blocks, and to suppress interrupts and status information
from the receiver, until a block start is identified. In both multiprocessor modes, the
sequence of data exchange with the USART module could be based on polling of data,
or using the receive interrupt features.

Both asynchronous multiprocessor protocols, the idle line and the address bit
multiprocessor mode allow efficient data transfer between multiple communication
systems. They also can be used to minimize activity of the system, whether to save
current consumption or processing resources. The MM bit in the control register defines
the address bit or idle line multiprocessor protocol mode. Both formats use the wake up
on transmitting, using the address feature function (TXWake bit), and on activating the
RXWake bit. The URXWIE and URXIE bits control the transmit and receive features of
these modes.

12.1.4 Idle line multiprocessor mode

In this mode, blocks of data are separated by an idle time between them. An idle receive
line is detected when 10 or more 1s in a row are received after the first stop bit of a
character.

Blocks of frames

UTXD/ H
URXD L

Idle periods of 10 bits or more

ST ADDRESS SP ST DATA SP ST DATA SP

UTXD/URXD EXPANDED

UTXD/ H
URXD L

First frame within block is
address. It follows idle
period of 10 bits or more.

Frame within block
Idle period
less than
10 bits

Frame within block

Figure 12.6: Idle line multiprocessor protocol



MSP430 Family USART Peripheral Interface, UART Mode

12-7

12

When two stop bits are used, the second one is counted as the first 'Mark' bit of the idle
period. The first character received after an idle period is an address character. The
RXWake bit can be used as an address tag for the character. In idle line multiprocessor
format, RXWake bit is set when a received character is an address character and is
transferred into the receive buffer.

Example:one stopbit

XXXXX SP

10 bit idle period

ST XXXXXXX

XXXXX SP ST XXXXXXXSP

Mark

Space

Mark

Space

SP: stopbit
ST: startbit

10 bit idle periodExample:two stopbit

Figure 12.7: USART Receiver Idle Detect

Normally, if the USART’s URXWIE bit in the receive control register is set, characters
will be assembled as usual by the receiver, but they will not be transferred to the
receiver buffer, URXBUF, nor will interrupts be generated. When an address character
is received, the receiver is temporarily activated to transfer the character to URXBUF
and set the URXIFG interrupt flag. Appropriate error status flags will be set. The
application software can validate the received address. If there is a match, the
application software will handle the further data processing and execute proper
operation. If not, the processor waits for the next address character to arrive. The
URXWIE bit itself is not modified by the USART: it should be modified by the user in
order to receive non-address characters or address characters.

In idle line multiprocessor mode, a precise idle period can be generated to create
efficient address character identifiers. Associated with the TXWake bit is the wake-up
temporary (WUT) flag. WUT is an internal flag, double buffered with TXWake. When the
transmitter is loaded from UTXBUF, WUT is loaded from TXWake, and TXWake bit is
reset.

TXWake TX Buffer UTXBUF

TX signal

Start bit Parity bit

WUT TX Shift Register

Figure 12.8: Double-Buffered WUT and TX Shift Register



USART Peripheral Interface, UART Mode MSP430 Family

12-8

12

Sending out an idle frame to identify an address character is accomplished as follows:

The TXWake bit should be set, and then any word (don't care) must be written to the
UTXBUF (UTXIFG should be set). When the transmitter shift register is empty (TXEPT
is set), the contents of the UTXBUF are shifted to the transmit shift register, and the
TXWake value is shifted to WUT. When the WUT bit has been set, the start, data, and
parity bits will be suppressed and an idle period of exactly 11 bits will be transmitted.
The next data word, shifted out of the serial port after the address character identifying
idle period, will be the second word written to the UTXBUF after TXWake bit was set.
The first data word written is suppressed while the address identifier is sent out, and
ignored after that. Writing the first don't care word to UTXBUF is necessary so that the
TXWake bit value can be shifted to WUT.

Example:  one stopbit

XXXXX SP

11 bit idle period

ST XXXXXXX

XXXXX SP ST XXXXXXXSP

Mark

Space

Mark

Space

SP: stopbit
ST: startbit

11 bit idle periodExample:  two stopbits

Figure 12.9: USART Transmitter Idle Generation



MSP430 Family USART Peripheral Interface, UART Mode

12-9

12

12.1.5 Address bit Format

In this mode, characters contain an extra bit that is used as an address indicator. The
first character in a block of data carries an address bit that is set to indicate that the
character is an address. The RXWake bit is set when a received character is an address
character, and is transferred into the receive buffer (receive conditions are true).

Normally, if the USART’s URXWIE bit is set, data characters will be assembled as usual
by the receiver, but they will not be transferred to the receiver buffer URXBUF nor will
interrupts be generated. When a character is received that has an address bit set, the
receiver is temporarily activated to transfer the character to URXBUF and set the
URXIFG. Error status flags will be set as appropriate. The application SW handles the
succeeding operation for the best benefit in processing resource handling or current
consumption reduction. The application software can validate the received address. If
there is a match, the processor can read the remainder of the data block. If not, the
processor waits for the next address character to arrive.

Blocks of frames

UTXD/ H
URXD L

Idle periods of no significance

ST ADDRESS SP ST DATA SP ST DATA SP

TXD/RXD EXPANDED

UTXD/ H
URXD L

First frame within block is an
address.The ADDR/DATA
bit is "1".

ADDR/DATA bit is "0"
for data within block.

Idle time is of
no significance

1 0 0

Figure 12.10: Address bit multiprocessor protocol

In address bit multiprocessor mode, the address bit of a character can be controlled by
writing to the TXWake bit. The value of the TXWake bit is loaded into the address bit of
that character each time a character is transferred from the transmit buffer UTXBUF to
the transmitter. The TXWake bit is then cleared by the USART.



USART Peripheral Interface, UART Mode MSP430 Family

12-10

12

12.2 Interrupt and Control Function

The USART peripheral serves two main interrupt sources, for transmission and
reception. Two individual interrupt vectors are available, one for receive and one for
transmit interrupt events.

The control bits of the USART are located in the SFR address range:

• Receive Interrupt Flag URXIFG initial state reset (by PUC/SWRST)
• Receive Interrupt Enable URXIE initial state reset (by PUC/SWRST)
• Receive Enable URXE initial state reset (by PUC)
• Transmit Interrupt Flag UTXIFG initial state set (by PUC/SWRST)
• Transmit Interrupt Enable UTXIE initial state reset (by PUC/SWRST)
• Transmit Enable UTXE initial state reset (by PUC)

The receiver and transmitter of the USART operate fully independently, but use the
same baud rate generator. Transmit and receive use  the same baud rate.

12.2.1 USART Receive Enable

The Receiver Enable bit URXE enables or disables the receiver from collecting the bit
stream on the URXD data line. Disabling the USART receiver will stop the receive
operation after completing a receive operation which has been started, or stop
immediately if no receive operation is active. The start bit detection is disabled.

Idle State
(Receiver
enabled)

Receive
disable

Receiver
collects

Character

URXE=0

URXE=1

URXE=0

No valid start bit

valid start bit

URXE=0

not completed

Handle Interrupt
Conditions

character
received

URXE=1,

URXE=1

Figure 12.11: State diagram on Receiver enable URXE

Note: URXE re-enable, UART Mode

Since the receiver is completely disabled a re-enable of the receiver is
asynchronous to any data stream on the communication line. Synchronization
can be done by looking for an idle line condition before accepting any received
character.



MSP430 Family USART Peripheral Interface, UART Mode

12-11

12

12.2.2 USART Transmit Enable

The transmit enable bit UTXE enables or disables a character transmission on the serial
data line. If this bit is reset, the transmitter is disabled but any active transmission is not
halted until all data previously written into the transmit buffer has been sent. If the
transmission is completed, any further write to the transmitter buffer will not result in a
data transmission.

Idle State
(Transmitter

enabled)

Transmit
disable

Transmission
active

UTXE=0

UTXE=1

UTXE=0

no data written
to transmit buffer

data written to

UTXE=0

not completed

Handle Interrupt
Conditions

character
transmitted

UTXE=1,

UTXE=1

transmit buffer

Figure 12.12: State diagram on Transmitter enable

When UTXE is reset any data can be written regularly into the transmit buffer, but no
transmission is started. Once the UTXE bit is set, an immediate start of transmission of
the character presently in the buffer is initiated. This character is transmitted correctly.

Note: Write to UTXBUF, UART Mode

Data should never be written into the transmit buffer UTXBUF when it is not
ready and the transmitter is enabled (UTXE is set). If it is, the character shifted
out can be random.



USART Peripheral Interface, UART Mode MSP430 Family

12-12

12

12.2.3 USART Receive Interrupt Operation

The receive interrupt flag URXIFG is set or is unchanged each time a character is
received and loaded into the receive buffer:
• Erroneous characters (parity, frame or break error) will not set interrupt flag

URXIFG when URXEIE is reset: URXIFG is unchanged.
• All type of characters (URXWIE=0) or only address characters (URXWIE=1) will set

the interrupt flag URXIFG pending on the bit URXWIE. When URXEIE is also set,
erroneous character will set the interrupt flag URXIFG.

URXIE

URXIFG

PUC
SWRST

URXBUF read

IRQA

Clear

Request_Interrupt_Service

OR
break detected

URXS

Clear

URXSE
from URXD

Receiver collects character
Valid start bit

τ

SYNC

PE

URXEIE

URXWIE
RXWake

FE

Erroneous character
will not set flag URXIFG

character received
Each character or address

addresswill set flag URXIFG

SYNC

URXSE

BRK
(S)

Figure 12.13: Receive Interrupt Conditions

URXIFG is reset at system reset PUC, or at a software reset SWRST. URXIFG is reset
automatically if the interrupt is served (URXSE=0) or the receive buffer URXBUF is read.
The Receive Interrupt Flag URXIFG indicates, if set, an interrupt event waiting to be
served. The Receive Interrupt Enable bit URXIE enables, if set, serving of a waiting
interrupt request. Both the receive interrupt flag URXIFG and the receive interrupt
enable bit URXIE are reset with PUC and SWRST.
The signal URXIFG can be accessed by software. Signal URXS can not be accessed by
software. When both interrupt events - receive start detection and character receive
action - are enabled by software, the flag URXIFG indicates that a character was
received and not the start detect request interrupt service. This works, since the interrupt
software handler for the receive start detection will reset the URXSE bit. This clears the
URXS bit and prevents further interrupt requests from URXS. The URXIFG should be
already reset since no set condition was at this time at URXIFG latch.



MSP430 Family USART Peripheral Interface, UART Mode

12-13

12

12.2.4 USART Transmit Interrupt Operation

The transmit interrupt flag UTXIFG is set by the transmitter to indicate that the
transmitter buffer UTXBUF is ready to accept another character. This bit is automatically
reset if the interrupt request service is started or a character is written into the UTXBUF.
This flag will assert a transmitter interrupt if the local (UTXIE) and general (GIE) interrupt
enable bit are set. The UTXIFG is set after system reset PUC or SWRST are removed.

UTXIE

UTXIFG

PUC or SWRST

UTXBUF written into transmit shift register

IRQA

character moved from
Clear

Request_Interrupt_Service

buffer to shift register

VCC
Set

D Q

Clear

Q

SWRST

Figure 12.14: Transmit Interrupt Condition

The transmit interrupt enable UTXIE bit controls the ability of the UTXIFG to request an
interrupt but does not prevent the flag UTXIFG from being set. The UTXIE is reset with
PUC or software reset bit SWRST. The UTXIFG bit is set after system reset PUC or
software reset SWRST, but the UTXIE bit is reset to ensure full interrupt control
capability.



USART Peripheral Interface, UART Mode MSP430 Family

12-14

12

12.3 Control and Status Register

The USART module hardware is byte structured and should be accessed by byte
processing instructions (suffix 'B').

Register short form Register type Address Initial state

• USART Control register UCTL Type of read/write   070h See ....
• Transmit Control register UTCTL Type of read/write   071h individual ...
• Receive Control register URCTL Type of read/write   072h bit description
• Modulation Control reg. UMCTL Type of read/write   073h unchanged
• Baud Rate register 0 UBR0 Type of read/write   074h unchanged
• Baud Rate register 1 UBR1 Type of read/write   075h unchanged
• Receive Buffer URXBUF Type of read/write   076h unchanged
• Transmit Buffer UTXBUF Type of read   077h unchanged

All bits are random after PUC, unless noted otherwise by the detailed functional
description.
Reset of the USART is performed by PUC or SWRST bit. After power-up clear (PUC)
the SWRST bit remains set and the USART remains in this condition until the reset is
disabled by resetting the SWRST bit.
The USART module operates in asynchronous or in synchronous mode defined by the
SYNC bit. The bits in the control registers may have different functions in the two
modes. All bits in this section are described with their functions in the asynchronous
mode - SYNC=0. Their functions in the synchronous mode are described in the
USART’s serial peripheral interface section.

12.3.1 USART Control register UCTL

The information stored in the control register determines the basic operation of the
USART module. The register bits select the communications protocol, communication
mode and parity bit. All bits should be programmed according to the selected mode
before reset is disabled by resetting bit SWRST.

UCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
070h

7 0

SWRSTMMSYNCListenCHARSPPEVPENA

Figure 12.15: USART Control Register UCTL

Bit 0: The USART state machines and operating flags are initialized to the reset
condition if the software reset bit is set. Until the SWRST bit is reset, all
affected logic is held in the reset state. This implies that after a system reset
the USART must be re-enabled by resetting this bit. The receive and
transmit enable flags URXE and UTXE are not altered by SWRST.



MSP430 Family USART Peripheral Interface, UART Mode

12-15

12

Bit 1: Multiprocessor mode (address/idle line wake up).
Two multiprocessor protocols, idle line and address bit, are supported by the
USART module. The choice of multiprocessor mode affects the operation of
the automatic address decoding functions.
MM = "0" : Idle line multiprocessor protocol
MM = "1" : Address bit multiprocessor protocol
The conventional asynchronous protocol uses MM bit reset

Bit 2: Mode or function of USART module selected.
The SYNC bit selects the function of the USART peripheral interface
module. Some of the USART control bits will have different functions in
UART and SPI mode.
SYNC = 0 : UART function is selected.
SYNC = 1 : SPI function is selected.

Bit 3: The Listen bit selects if the transmitted data is fed back internally to the
receiver.
Listen = 0 : No feed back.
Listen = 1 : Transmit signal is internally fed back to the receiver. Each

transmission from the MSP430’s USART is received parallel
and no external signal is received anymore.

Bit 4: Character length.
This register bit selects the length of the character to be transmitted as 7 or
8 bits. Characters of 7 bits do not use the eighth bit in URXBUF and
UTXBUF and this bit is padded with "0".
CHAR = 0 : 7 bit data.
CHAR = 1 : 8 bit data.

Bit 5: Number of stop bits.
This bit determines the number of stop bits transmitted. The receiver checks
for one stop bit only.
SP = 0 : one stop bit.
SP = 1 : two stop bits.

Bit 6: Parity odd/even.
If PENA bit is set (parity bit is enabled), the PEV bit defines odd or even
parity according to the number of odd or even "1" bits in both transmitted
and received characters, address bit (address bit multiprocessor mode) and
parity bit.
PEV = 0 : Odd parity
PEV = 1 : Even parity.

Bit 7: Parity enable.
If parity is disabled no parity bit is generated during transmission or
expected during reception. A received parity bit is not transferred to the
URXBUF with the received data as it is not considered as one of the data
bits. During address bit multiprocessor mode, the address bit is included in
the parity calculation.
PEN = 0 : Parity disable
PEN = 1 : Parity enable



USART Peripheral Interface, UART Mode MSP430 Family

12-16

12

Note: MARK, SPACE definition

The MARK condition is identically to the signal level in the idle state. SPACE is
the opposite signal level: the start bit is always SPACE.

12.3.2 Transmit Control Register UTCTL

The register UTCTL controls the USART hardware associated with transmit operation.

UTCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
071h

7 0

TXEPTTXWakeURXSESSEL1CKPL SSEL0 unusedunused

Figure 12.16: USART Transmitter Control Register

Bit 0: The transmitter empty TXEPT flag is set when the transmitter shift register
and UTXBUF are empty, and reset when data is written to UTXBUF. It is set
on SWRST.

Bit 1: unused
Bit 2: The TXWake bit is used to control the transmit features of the

multiprocessor communication modes. Each transmission - started by
loading the UTXBUF - uses the state of the TXWake bit to initialize the
feature of address identification. It should not be cleared - the USART
hardware clears this bit once it has been transferred to "Wake Up
Temporary", WUT; SWRST also clears TXWake bit.

Bit 3: The receive start edge control bit requests - if set - a receive interrupt
service. For a successful interrupt service the corresponding enable bits
URXIE and GIE should be set. The advantage of this bit is to start the
controller’s clock system including MCLK along with the interrupt service,
and keep it running by modifying the mode control bits. The USART is
working with selected MCLK properly, even if the system is switched to a
low power mode with disabled MCLK.

Bit 4,5: Source Select 0 and 1.
The source select bit defines which clock source is used for the baud rate
generation:
SSEL1,SSEL0 0 external clock selected, UCLKI

1 auxiliary clock selected, ACLK
2, 3 main system clock selected, MCLK

Bit 6: Clock polarity CKPL.
The CKPL bit controls the polarity of the UCLKI signal.
CKPL = 0: the UCLKI signal has same polarity than UCLK signal.
CKPL = 1: the UCLKI signal has inverted polarity of UCLK signal.

Bit 7: Unused



MSP430 Family USART Peripheral Interface, UART Mode

12-17

12

12.3.3 Receive Control Register URCTL

The register URCTL controls the USART hardware associated with the receiver
operation and holds error and wakeup conditions modified by the latest character written
to the receive buffer URXBUF. Once any of the bits FE, PE, OE, BRK, RXERR or
RXWake is set, they are not reset by receiving another character. They are reset by
accessing the receive buffer URXBUF, by a USART SW reset SWRST, a system reset
PUC or by instruction.

URCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
072h

7 0

RXERRRXWakeOEPEFE BRK URXEIE URXWIE

Figure 12.17: USART Receiver Control Register

Bit 0: The receive error bit RXERR indicates that one or more error flags (FE, PE,
OE or BRK) are set. It is not reset when the error bits are cleared by
instruction.

Bit 1: Receiver Wake-up Detect
RXWake bit is set when a received character is an address character and is
transferred into the receive buffer.
Address bit multiprocessor mode: RXWake is set when the address bit is

set in the character received.
Idle line multiprocessor mode: RXWake is set if an idle URXD line was

detected (11 bits of Mark level) in front
of the received character.

RXWake is reset by accessing the receive buffer URXBUF, by a USART
SW reset SWRST or a system reset PUC.

Bit 2: The receive wake-up interrupt enable bit URXWIE selects the type of
character that will set the interrupt flag URXIFG:
URXWIE=0: each character received will set the URXIFG
URXWIE=1: only characters that are marked as address characters

will set the interrupt flag URXIFG. It operates identically in
both multiprocessor modes.

The wake-up interrupt enable feature depends on the receive erroneous
character feature. See also URXEIE bit.

Bit 3: The receive erroneous character interrupt enable bit URXEIE selects if an
erroneous character will set the interrupt flag URXIFG.
URXEIE=0: each erroneous character received will not alter the

interrupt flag URXIFG
URXEIE=1: all characters can set the interrupt flag URXIFG

depending on the conditions set by URXWIE bit.



USART Peripheral Interface, UART Mode MSP430 Family

12-18

12

URXEIE URXWIE  Char. Char. Description Flag URXIFG
w/ Error address after a character was received

0 x 1 x unchanged
0 0 0 x set
0 1 0 0 unchanged
0 1 0 1 set
1 0 x x set (will receive all characters)
1 1 x 0 unchanged
1 1 x 1 set

Bit 4: The break detect bit BRK is set when a break condition occurs and URXEIE
bit is set. The break condition is recognized if the RXD line remains
continuously low for at least 10 bits, beginning after a missing first stop bit. It
is not cleared by receipt of a character after the break is detected - but reset
by SWRST, system reset, and by reading the URXBUF.

Bit 5: The overrun error flag bit OE is set when a character is transferred into the
URXBUF before the previous character has been read out. The previous
character is overwritten and lost. OE is reset by SWRST, system reset, and
by reading the URXBUF.

Bit 6: The parity error bit PE is set when a character is received with a mismatch
between the number of "1's" and its parity bit and is loaded into the receive
buffer. The parity checker includes the address bit - used with the address
bit multiprocessor mode - in the calculation. The flag is disabled if parity
generation and detection is not enabled. In such a case, it is read as "0". It
is reset by SWRST, system reset, and by reading the URXBUF.

Bit 7: The framing error flag bit FE is set when a character is received with a "0"
stop bit and is loaded into the receive buffer. Only the first stop bit is
checked when more than one is used. The missing stop bit indicates that
synchronization with the start bit has been lost and the character is
incorrectly framed. FE is reset by SWRST, system reset, and reading
URXBUF.

Note: Receive Status Control bits

The receive status control bits FE, PE, OE, BRK and RXWake are set
conditionally by the hardware according to the conditions of the characters
received. Once bits are set they remain set until the software will reset them
directly or by reading the receive buffer. False character interpretation or
missing interrupt capability can be the result of non-cleared error bits.



MSP430 Family USART Peripheral Interface, UART Mode

12-19

12

12.3.4 Baud Rate Select and Modulation Control Registers

The baud rate generator uses the content of both baud rate select registers UBR1 and
UBR0 together with the modulation control register to generate the bit timing for the
serial data stream.

UBR0

rw rw rw rw rw rw rw rw
074h

7 0

2

UBR1

rw rw rw rw rw rw rw rw
075h

7 0

7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

215 214 213 212 211 210 2 9 2 8

Figure 12.18: USART Baud Rate Select Register

Baudrate = 
BRCLK

UBR +  
1
n

mi
i=0

n-1
∑

with UBR= [UBR1,UBR0]

The baud rate control register range is: 3 ≤ UBR < 0FFFFh

The modulation control register ensures a proper timing generation together with
UBR0/1, even with crystal frequencies that are not integer multiples of the required baud
rate.

UMCTL

rw rw rw rw rw rw rw rw
073h

7 0

m7 m6 m4 m3 m2 m1 m0m5

Figure 12.19: USART Modulation Control Register

The timing of the running bit is expanded by one clock cycle of the input clock of the
baud rate divider if the actual bit mi is set.

Each time a bit is received or transmitted the next bit in the modulation control register is
used to determine the present bit timing. The first bit time in the protocol - the start bit
time - is determined by UBR plus m0; the next bit by UBR plus m1,...
The modulation sequence is:

m0 - m1 - m2 - m3 - m4 - m5 - m6 - m7 - m0 - m1 - m2 - .....



USART Peripheral Interface, UART Mode MSP430 Family

12-20

12

12.3.5 USART Receiver Data Buffer URXBUF

The receiver buffer URXBUF contains previous data from the receiver shift register.
Reading URXBUF resets the receive error bits, RXWake bit and interrupt flag URXIFG.

URXBUF

r r r r r r r r
076h

7 0

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

Figure 12.20: USART Receive Buffer

In 7-bit length mode, the MSB of the URXBUF is always reset.

The receive buffer is loaded with the recently received character when receive and
control conditions are true:

URXEIE URXWIE Load URXBUF by PE FE BRK

    0     1 error-free address characters  0  0  0
    1     1 all address characters  x  x  x
    0     0 error-free characters  0  0  0
    1     0 all characters  x  x  x

12.3.6 USART Transmit Data Buffer UTXBUF

The transmit buffer contains current data to be transmitted by the transmitter.

TXBUF

rw rw rw rw rw rw rw rw
077h

7 0

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

Figure 12.21: USART Transmit Buffer

The UTXIFG flag indicates that UTXBUF is ready to accept another character for
transmission.
The transmission will be initialized by writing data to UTXBUF. The transmission of this
data is started immediately, if the transmitter shift register is empty or is going to be
empty.
Writing data to the transmit buffer should be done only if the buffer UTXBUF is empty,
otherwise an unpredictable character can be transmitted.



MSP430 Family USART Peripheral Interface, UART Mode

12-21

12

12.4 UART Mode, Utilizing Features of low power Modes

There are several functions or operational features implemented that support the basic
ultra-low power system of the MSP430 architecture:
• System start from any processor mode through sensing of UART frame start

condition
• Use lowest input clock frequency for required baud rate
• Support of multiprocessor modes for reduced use of MSP430 resources.

12.4.1 Start Receive Operation from UART Frame

The most effective use of the start detection in the receive path is reached when the
baudrate requires to run the system main clock MCLK, but the entire system can
operate without MCLK. The receive start condition is the negative edge from the signal
at URXD pin. Each time when it triggers the interrupt flag URXS, it requests a service
when URXIE and GIE enable bits are set. The MSP430 system returns to the active
mode and full system performance with MCLK and ACLK active.

URXIE

URXIFG

PUC
SWRST

URXBUF read

IRQA

Clear

Request_Interrupt_Service

OR
break detected

URXS

Clear

URXSE
from URXD

Receiver collects character
Valid start bit

τ

SYNC

URXEIE

URXWIE
RXWake

Erroneous character
will not set flag URXIFG

character received
Each character or address

will set flag URXIFG
URXSE

SYNC

PE
FE

BRK

Figure 12.22: Receive Start Conditions

Three character streams will not set the interrupt flag URXIFG:
• erroneous characters (URXEIE=0)
• address characters (URXWIE=1)
• and invalid start bit detect.
The interrupt software should handle these conditions. The interrupt handler must
configure the correct clock system condition and the clock system will continue operation
- and current consumption - until it is modified by the software. Whenever the CPU
operates in the active mode the clock system is operating normally and start condition
detection should not be used.



USART Peripheral Interface, UART Mode MSP430 Family

12-22

12

Start conditions

The URXD signal feed into the USART module is going first into a deglitch circuit.
Glitches can not trigger the receive start condition flag URXS. This prevents the module
from being started from small glitches on the URXD line. In noisy environments the
current consumption is reduced, since glitches does not start system and USART.

URXD

τt

Majority Vote

URXS

URXS is reset in the interrupt
handler using control bit URXSE

Figure 12.23: Receive Start Timing using URXS flag, start bit accepted

The UART stops receiving a character when the URXD signal exceeds the deglitch time
tτ but then the majority vote of the signal fails to start bit detection. The software should
handle this condition and hold the system in the appropriate low power mode. The
interrupt flag URXIFG is not set.

URXD

τt

Majority Vote

URXS

URXS is reset in the interrupt
handler using control bit URXSE

Figure 12.24: Receive Start Timing using URXS flag, start bit not accepted

Glitches at the URXD line are suppressed automatically and no further activity in the
MSP430 is started. The data for the deglitch time tτ  is noted in the corresponding
device specification.

URXD

τt

Majority Vote

URXS

Figure 12.25: Receive Start Timing using URXS flag, glitch suppression



MSP430 Family USART Peripheral Interface, UART Mode

12-23

12

The interrupt handler should reset the URXSE bit in the control register UCTL to prevent
further interrupt service requests from URXS signal and to enable the basic function of
receive interrupt flag URXIFG.

********************************************************************
*     INTERRUPT HANDLER FOR FRAME START CONDITION AND              *
*     CHARACTER RECEIVE                                            *
********************************************************************
IFG2 .EQU 3 ; URXIFG AND UTXIFG IN ADDRESS 3
UTCTL .EQU 71H ;
UTXIFG .EQU 0 ;
URXSE .EQU 8 ;

;

URX_INT BIT.B #URXIFG,&IFG2 ; TEST URXIFG SIGNAL TO CHAECK
JNE ST_COND ; IF FRAME START CONDITION
.....
.....

ST_COND BIC.B #URXSE,&UTCTL ; CLEAR FF/SIGNAL URXS, STOP
; FURTHER INTERRUPT REQUESTS

BIS.B #URXSE,&UTCTL ; PREPARE FF_URXS FOR NEXT FRAME
..... ;.START CONDITION
..... ; AND SET THE CONDITIONS TO RUN
..... ; THE CLOCK NEEDED FOR UART RX

Note: Break detect BRK bit with halted UART clock

If the UART is operating with the feature of wake-up with a start condition, and
to switch off the UCLK whenever a character is completely received, the break
of the communication line can not be detected automatically by the UART
hardware. The break detect needs the clock BRSCLK out of the baud rate
generator to detect this conditions, but it is stopped upon the missing UCLK.

12.4.2 Maximum Utilization of Clock Frequency vs. Baud Rate UART Mode

The current consumption depends linearly on the clock frequency. It should be kept to
the minimum required to meet the application conditions. Fast communication speed is
needed due to various reason - calibration and test in manufacturing processes, alarm
situations in critical applications, response time to human requests for information,......
 The baud rate generator in the MSP430 USART is realized to meet baud rates up to 1/3
of the clock frequency. An additional modulation of the baud rate timing gives extra
benefit since the timing for the single bit in a frame can be adjusted. The timing is
adjusted from bit to bit to meet the requirements even when a non-integer division is
needed. Baud rates can be done from a 32,768Hz crystal up to 4800 Baud with errors of
max. 11%. Standard UART’s can - with the worse maximum error (-14.6%) reach
maximum baud rates of 75 Baud.



USART Peripheral Interface, UART Mode MSP430 Family

12-24

12

12.4.3 Support of multiprocessor modes for reduced use of MSP430 resources

Communication systems with multiple character protocols can use the features of
multiprocessor modes - whether the idle line or the address bit protocol. The first
character can be a target address, a message identifier or can have another definition.
This character is interpreted by software, and if there is any significance for the
application the succeeding characters are collected and further activities defined. No
significance of the first character would stop any activity for the processing device. The
application of this feature is supported by the wake-up interrupt feature in receive
situation, and to send wake-up conditions along with transmission. Avoiding activity on
characters without any significance reduces the use of MSP430 resources and the
system can remain in the most efficient power conserving mode.
Additional to the multiprocessor modes, rejection of erroneous characters avoids
interrupt handling of these characters. This is useful whenever erroneous characters will
not be processed anyway. The processor waits in the most efficient power conserving
mode until a character can be processed.

12.5 Baud Rate Considerations

The baud rate generator of the MSP430 uses one divider and a modulator. A given
crystal’s frequency and a required baud rate will determine the needed division factor N:

N = Error!

The necessary division factor N usually has an integer part and a fraction. The divider in
the baudrate generator realizes the integer portion of the division factor N and the
modulator is responsible for meeting the fractional part as close as possible. The factor
N is defined:

N = UBR +  
1
n

 mi
i=0

n-1
∑

where N is the target division factor
UBR is the 16-bit representative of register UBR1 and UBR0
i is the actual bit in the frame
n is the number bits in the frame
mi is the data of the actual modulation bit.

Baudrate = 
BRCLK

N
 = 

BRCLK

UBR +  
1
n

 mi
i=0

n-1
∑



MSP430 Family USART Peripheral Interface, UART Mode

12-25

12

Bit Timing in Transmit Operation

[Address bit, MM=1]

[Parity bit, PE=1]

D0

[8th data bit, Char=1]

ST D7D6..............................

[2nd stop bit, SP=1]

Mark

Space

BRCLK

URXD

0
t

1
t

2
t

3
t

4
t

5
t

6
t

7
t

8
t

9
t

10
t

11
t

12
t

i
t

0 1 2 3 4 5 6 7 8 9 10 11 12i

Figure 12.26: MSP430 Transmit Bit Timing

The timing for each individual bit in one frame or character is the sum of the actual bit
timings. The error of the baud rate generation in respect to the required ideal timing is
calculated for each individual bit. The relevant information is the error relative to the
actual bit, not the overall relative error.

D0ST PAD7
Mark

Space
URXD

target
t

0 1 8 9 10 11i

0
t

1
t

8 9
t

10
t

11
tt

actual
t

0
t

1
t

8 9
t

10
t

11
tt

error
t

Figure 12.27: MSP430 Transmit Bit Timing Errors

Even small errors per bit (relative errors) end up in larger errors - they should be
considered to be accumulative, not relative. The error of an individual bit can be
calculated by:

Error [%] = 
t t

t
x

actual t et
i

n

i

n

baud rate

i i−
=

−

=

−
∑∑ arg

0

1

0

1

100%

OR



USART Peripheral Interface, UART Mode MSP430 Family

12-26

12

Error [%] = (( (( ) ) ( ))
baud rate
BRCLK

x i x UBR i xm
i

n
i+ + ∑ − +

=

−
1 1 100%

0

1

with baud rate is the required baud rate
BRCLK is the input frequency - selected for UCLK, ACLK or MClK
i=0 for the start bit, 1 for data bit D0, ...........
UBR is division factor in registers UBR1 and UBR0

Example 1
The following data are assumed:
baud rate = 2400 Baud
BRCLK = 32,768Hz (ACLK)
UBR = 13, since the ideal division factor should be 13.67
m = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and m0=1

The LSB (m0) of the modulation register is used first.

Start bit Error [%] =  (
baud rate

BRCLK
x (0 +1) x UBR +  1) - 1) x 100% ( = 2.54 %

Data bit D0 Error [%] =  (
baud rate
BRCLK

x (1+1) x UBR +  2) - 2) x 100% ( = 5.08 %

Data bit D1 Error [%] =  (
baud rate
BRCLK

x (2 +1) x UBR +  2) - 3) x 100% ( = 0.29 %

Data bit D2 Error [%] =  (
baud rate
BRCLK

x (3 +1) x UBR +  3) - 4) x 100% ( = 2.83 %

Data bit D3 Error [%] =  (
baud rate
BRCLK

x (4 +1) x UBR +  3) - 5) x 100% ( = -1.95 %

Data bit D4 Error [%] =  (
baud rate
BRCLK

x (5 +1) x UBR +  4) - 6) x 100% ( = 0.59 %

Data bit D5 Error [%] =  (
baud rate
BRCLK

x (6 +1) x UBR +  5) - 7) x 100% ( = 3.13 %

Data bit D6 Error [%] =  (
baud rate
BRCLK

x (7 +1) x UBR +  5) - ) x 100% ( 8 = -1.66 %

Data bit D7 Error [%] =  (
baud rate
BRCLK

x (8 +1) x UBR +  6) - ) x 100% ( 9 = 0.88 %

Parity bit Error [%] =  (
baud rate
BRCLK

x (9 +1) x UBR +  7) - ) x 100% ( 10 = 3.42 %

Stop bit 1 Error [%] =  (
baud rate
BRCLK

x (10 +1) x UBR +  7) - ) x 100% ( 11 = -1.37 %

Stop bit 2 Error [%] =  (
baud rate
BRCLK

x (11+1) x UBR +  8) - ) x 100% ( 12 = 1.17 %



MSP430 Family USART Peripheral Interface, UART Mode

12-27

12

The standard baud rate data needed for the baud rate registers and the modulation
register are listed for the watch crystal 32,768Hz (ACLK) and MCLK assumed to be
32-times the ACLK frequency. The error listed is calculated for the transmit and receive
path. Additionally to this error for the receive situation, the synchronization error should
also be considered.

Baud rate
UBR1

Divide by

UBR0 UMOD

75

110

150

300

600

1200

2400

4800

9600

19 200

38 400

76 800

115 200

ACLK MCLK

436.91

297.89

218.45

109.23

54.61

27.31

13.65

6.83

3.41

13981

9532.51

6990.5

3495.25

1747.63

873.81

436.91

218.45

109.23

54.61

27.31

13.65

9.10

ACLK (32 768Hz)

UBR1 UBR0 UMOD

MCLK (1 048 576Hz)
TX error

max.
TX error

max.

1 B4

1 29

0 DA

0 6D

0 36

0 1B

0 0D

0 06

0 03

01 B4

03 69

0 DA

0 6D

0 36

0 1B

0 09

36 9D

25 3C

1B 4E

0D A7

06 D3

0 0D

FF

FF

55

22

D5

03

6B

6F

4A

-9/11

6/3

-4/3

-1/1

-.3/.7

0/.4

0/.5

-.1/.3

-21/12

FF

FF

55

03

6B

03

08

FF

FF

FF

00

FF

6B

0/.3

0/.3

0/.4

-.4/1

-.2/2

-4/3

-5/7

-6/3

0/.3

-.1/0

0/.1

0/.1

0/.1

RX error
max.

-9/11

-6/3

-4/3

-1/1

-.3/.7

0/.4

0/.5

-.1/.3

-21/12

RX error
max.

RX error
Synchr.

+/-15

+/-7

+/-4

+/-2

+/-2

+/-2

+/-2

+/-3

+/-2

+/-7

+/-4

+/-2

+/-2

+/-2

+/-2

+/-2

+/-2

+/-2

+/-2

+/-3

+/-2

+/-2

%% % %%

Table 12.2: Mostly used Baud Rates, Baudrate data and errors

The synchronization error results from the asynchronous timing between the data signal
at the URXD pin and the internal clock system. The receive signal is synchronized with
the BRSCLK clock. The BRSCLK clock is sixteen to thirty-one times faster than the bit
timing:

BRSCLK = BRCLK for    N ≤ 1F
BRSCLK = BRCLK/2 for 20h ≤ N ≤ 3Fh
BRSCLK = BRCLK/4 for 40h ≤ N  ≤ 7Fh
BRSCLK = BRCLK/8 for 80h ≤ N ≤ FFh
BRSCLK = BRCLK/16 for 100 ≤ N ≤ 1FF
BRSCLK = BRCLK/32 for 200 ≤ N ≤ 3FFh
BRSCLK = BRCLK/64 for 400 ≤ N ≤ 7FFh
BRSCLK = BRCLK/128 for 800h ≤ N ≤ FFFh
BRSCLK = BRCLK/256 for 1000h ≤ N ≤ 1FFFh
BRSCLK = BRCLK/512 for 2000h ≤ N ≤ 3FFFh
BRSCLK = BRCLK/1024 for 4000h ≤ N ≤ 7FFFh
BRSCLK = BRCLK/2048 for 8000h ≤ N ≤ FFFFh



USART Peripheral Interface, UART Mode MSP430 Family

12-28

12

ST D0URXD

target
t

0 1i

actual
t

0
t

1
t

0
t

1
t

BRSCLK

ST D0URXDS

Synchronization error +/- 0.5 BRSCLK

Sample
URXDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6

int(UBR/2)+m0 = UBR+m1 = 13+1 = 14

D2

D2

7

UBR+m2 = 13+0 = 13

2
t

2

Majority vote taken Majority vote taken Majority vote taken
int(13/2)+1 = 6+1 = 7

The target baud rate timing ttarget0 for the start bit detection is half the baud rate timing
tbaud rate since the bit is tested in the middle of its period. The target baud rate timing
ttargeti for the all other succeeding bits is the baud rate timing tbaud rate.

Error [%] = 
t t

x t

t t

t
x

actual t et

t et

actual t et
i

n

i

n

t et

i i

i

0 0

00 5
100%1

1

1

1

+ +
∑∑ −
=

−

=

−

arg

arg

arg

arg.

OR

Error [%] = ( { [ int( / )] ( )} )
baud rate
BRCLK

x x m UBR ixUBR i xm
i

n
i2 0 2 1 100%

1

1
+ + + ∑ − −

=

−

where baud rate is the required baud rate
BRCLK is the input frequency - selected for UCLK, ACLK or MClK
i=0 for the start bit, 1 for data bit D0, ...........
UBR is division factor in registers UBR1 and UBR0



MSP430 Family USART Peripheral Interface, UART Mode

12-29

12

Example 2
The following data are assumed:
baud rate = 2400 Baud
BRCLK = 32,768Hz (ACLK)
UBR = 13, since the ideal division factor should be 13.67
m = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and m0=1

The LSB (m0) of the modulation register is used first.

Start bit Error [%] = {
baud rate
BRCLK

x (1+ 6) + (0xUBR + 0 - 0)] - 1} x 100% [2x = 2.54 %

Data bit D0 Error [%] = {
baud rate
BRCLK

x (1+ 6)+ (1xUBR +1)] - 1-1} x 100% [2x = 5.08 %

Data bit D1 Error [%] = {
baud rate
BRCLK

x (1+ 6)+ (2xUBR +1)] - 1- 2} x 100% [2x = 0.29 %

Data bit D2 Error [%] = {
baud rate
BRCLK

x (1+ 6) + (3xUBR + 2)] - 1- 3} x 100% [2x = 2.83 %

Data bit D3 Error [%] = {
baud rate
BRCLK

x (1+ 6) + (4xUBR + 2)] - 1- 4} x 100% [2x = -1.95 %

Data bit D4 Error [%] = {
baud rate
BRCLK

x (1+ 6) + (5xUBR + 3)] - 1- 5} x 100% [2x = 0.59 %

Data bit D5 Error [%] = {
baud rate
BRCLK

x (1+ 6) + (6xUBR + 4)] - 1- 6} x 100% [2x = 3.13 %

Data bit D6 Error [%] = {
baud rate
BRCLK

x (1+ 6)+(7xUBR + 4)] - 1- 7} x 100% [2x = -1.66 %

Data bit D7 Error [%] = {
baud rate
BRCLK

x (1+ 6) + (8xUBR + 5)] - 1- 8} x 100% [2x = 0.88 %

Parity bit Error [%] = {
baud rate
BRCLK

x (1+ 6) + (9xUBR + 6)] - 1- 9} x 100% [2x = 3.42 %

Stop bit 1 Error [%] = {
baud rate
BRCLK

x (1+6)+(10xUBR+6)] -1-10} x 100% [2x = -1.37 %

Stop bit 2 Error [%] = {
baud rate

BRCLK
x (1+ 6) + (11xUBR + 7)] -1-11} x 100% [2x = 1.17 %

Baud Rate Considerations - Conclusion

The system chosen to generate a proper serial communication bit stream allows baud
rates up to nearly the clock rate fed into the USART. It enables low accumulating errors
through modulation of the individual bit timing. In practice an error margin of 20% to 30%
should make proper serial communication possible.



USART Peripheral Interface, UART Mode MSP430 Family

12-30

12



MSP430 Family USART Peripheral Interface, SPI Mode

13-1

13

13 USART Peripheral Interface, SPI Mode

The synchronous interface is a serial channel which allows a serial bit stream of 7 or 8
bits to be shifted into and out of the MSP430, at an externally determined rate or at an
internally programmed rate. The USART module is connected to the CPU as a byte
peripheral. It connects the controller to the external system environment by three or four
external pins.

USART’s serial synchronous communication features :

• Control bit SYNC in control register UCTL is set to select synchronous mode
• Supports 3 pin and 4 pin SPI operation via SOMI, SIMO, UCLK and STE
• Select master or slave mode
• Separate shift registers for receive (URXBUF) and transmit (UTXBUF)
• Double buffering for receive and transmit
• Clock polarity and clock phase control
• Clock frequency control in master mode
• Character length 7 or 8 bits/character

Receive Buffer URXBUF

Receive Shift Register

Baud Rate Generator

Transmit Shift
Register

Transmit Buffer UTXBUF

Receive Status

CKPL

UCLKI

MCLK

ACLK

SSEL1 SSEL0

0

1
2

3
MCLK

Baud Rate Generator

Baud Rate Register

Listen
0 1 SOMI

1 0

1 SIMO

0

MM

UCLK
Clock Phase & Polarity

CKPH

(UCLKI)

UCLKS

SYNC

UCLKS

SYNC

SYNC

MSB first

SYNC = 1

MSB first

STE

Figure 13.1: Block diagram of USART - SPI mode



USART Peripheral Interface, SPI Mode MSP430 Family

13-2

13

13.1 USART’s Synchronous Operation

In the synchronous mode, data and clock signals are used to transmit and receive serial
data. The master supplies the clock and data. The slave(s) use this clock to shift the
serial information in and out. The 4 pin SPI mode uses a control line additionally, to
enable a slave to receive and transmit data. It is controlled by the master.

Three or four signals are used for the data exchange:
• SIMO Slave in, master out
• SOMI Slave out, master in
• UCLK USART clock, the master drives this signal and the slave uses it to 

receive and transmit data
• STE Slave transmit enable, used in 4-pin mode to control more than one slave 

in a multiple master and slave system.

The interconnection of the USART in synchronous mode to another device’s serial port
with one common transmit receive shift register is shown when MSP430 is master or
slave. The operation will remain identical. The master initiates the transfer by sending
the UCLK signal. For the master, data is shifted out of the transmit shift register on one
clock edge and shifted into the receive shift register on the opposite edge. For the slave,
the data shifting operation is the same, using one common register shift for transmitting
and receiving data. Master and slave send and receive data at the same time.

Whether or not the data is meaningful or dummy data depends upon the application
software:

1. Master sends data and Slave sends dummy data
2. Master sends data and Slave sends data
3. Master sends dummy data and Slave sends data.

The master can initiate data transfer at any time, and controls the UCLK. The software
protocol determines the way in which the master knows when the slave wishes to
broadcast data.

Transmit Buffer UTXBUF

Transmit Shift Reg

 Receive Buffer URXBUF

Receive Shift Reg

UCLK

SOMI

SIMO

MSP430 USART

SPI Receive Buffer

Data Shift Reg. DSR

SCLK

SOMI

SIMO

COMMON SPI

MSBLSBMSBLSBMSB LSB

MASTER SLAVE

STE

STE ..

SS

Px.x

Port.x

Figure 13.2: MSP430 USART as Master, external device with SPI as slave



MSP430 Family USART Peripheral Interface, SPI Mode

13-3

13

 There follows an example of serial synchronous data transfer for a character length of
seven bits. The initial content of receive shift register is 00.

CKPL=0
CKPH =0

SIMO from

Slave
SOMI from

Master

Master Inter.

Slave Inter.
URXIFG

7      6      5     4      3      2     1

BA C D E GF H I

7      6      5     4      3      2     1

Shift data out

Shift data in

CKPL=1
CKPH =0

UTXIFG 

STE

A: Slave writes 98h to the DSR and waits for the master to shift out data.
B: Master writes B0h to UTXBUF which is immediately transferred to the Transmit Shift

Register and starts the transmission.
C: First character is finished and sets the interrupt flags.
D: Slave reads 58h from its receive buffer (right justified).
E: Slave writes 54h to its DSR and waits for the master to shift out data.
F: Master reads 4Ch from receive buffer URXBUF (right justified).
G: Master writes E8h to the transmit buffer UTXBUF and starts the transmission.
H: Second character is finished and sets the interrupt flag.
I: Master receives 2Ah and slave receives 74h (right justified).

1 0 0 1 1 0 0 098h > DSR 1 0 1 1 0 0 0 0B0h > UTXBUF

0URXBUF 0DSR 1 0 1 1 0 0 0

0 1 0 1 0 1 0 054h > DSR

0URXBUF 1) 0 1 0 1 0 1 0

In 7bit Mode, the MSB of RXBUF is always read 0.

1 1 1 0 1 0 0 0A8h > UTXBUF

0DSR

MSB LSB MSB LSB

1 1 1 0 1 0 0

1 0 0 1 1 0 0

B:

C,D:

A:

C,F:

E: G:

fron initial state

S

S

S

S

M

M

M

M

S: Slave M: Master

1)

1)



USART Peripheral Interface, SPI Mode MSP430 Family

13-4

13

Transmit Buffer UTXBUF

Transmit Shift Reg

 Receive Buffer URXBUF

Receive Shift Reg

SPI Receive Buffer

Data Shift Reg. DSR

MSB LSBMSB LSBMSBLSB

UCLK

SOMI

SIMO

MSP430 USART

SLAVE

SCLK

SOMI

SIMOMASTER

COMMON SPI

STE

STE ..

SS

Px.x

Port.x

Figure 13.3: MSP430 USART as Slave in 3 pin or 4 pin configuration

13.1.1 Master Mode in Synchronous USART Mode, MM=1, SYNC=1

The master mode is selected when master mode bit MM in the control register UCTL is
set. The USART controls the serial communication network by providing UCLK at the
UCLK pin. Data is output on the SIMO pin on the first UCLK period and latched from the
SOMI pin in the middle of the corresponding UCLK period.
The data written to the transmit buffer UTXBUF is moved to the transmit shift register as
soon as it is empty and this initiates the data transfer on the SIMO pin, with the most
significant bit first. At the same time, received data is shifted into the receive shift
register, and upon completing of receiving the selected number of bits, the received data
is transferred to the receive buffer URXBUF and the receive interrupt flag URXIFG is
set. Data is shifted into the receive shift register, with the most significant bit first. It is
stored right justified in receive buffer URXBUF. When previous data was not read from
the receive buffer URXBUF the overrun error bit OE is set.

Note: USART Synchronous Master Mode, Receive initiation

The master should write data to the transmit buffer UTXBUF to receive a
character. The receive starts when the transmit shift register is empty and the
data is transferred into it. Receive and transmit always take place together, at
opposite clock edges.

The control of the protocol can be done by using the transmit interrupt flag UTXIFG or
the receive interrupt flag URXIFG. Using the UTXIFG immediately after sending the data
from the shift register to the slave the data from the buffer is transferred to the shift
register and the transmission starts. The slave receive timing needs to ensure pick-up of
the data in time. The URXIFG flag indicates when the data is shifted out and in



MSP430 Family USART Peripheral Interface, SPI Mode

13-5

13

completely. The master can use URXIFG to ensure that the slave should be ready to
receive the next data properly.
Any standard digital output including STE in standard digital port function can be used to
select a slave. The slave use the STE signal to enable its access to the SOMI data line
and to enable to receive the clocks on UCLK.
4-pin SPI master mode, SYNC=1, STC=0, MM=1
The signal on STE is used by the active master to prevent bus conflicts with another
master. The STE pin is input when the corresponding PnSEL bit selects the module
function. The master operates normally while the STE signal is high. Whenever the STE
signal is set to low - e.g. another device requests to become master - the actual master
reacts with:
• the pins that drive the SPI bus lines SIMO and UCLK, are set to inputs
• the error bit FE and the interrupt flag URXIFG in the URCTL register are set.
The bus conflict is then removed - SIMO and UCLK do not drive the bus lines - and the
error flag indicates to the software the violation of the system integrity. The pins SIMO
and UCLK are forced to inputs while STE is low, and return to the conditions defined by
the corresponding control bits when STE returns to high.
In the 3-pin mode the STE input signal is not relevant for the master.

13.1.2 Slave Mode in SPI Mode, MM=0, SYNC=1

The slave mode is selected when the master mode bit MM in the control register is reset
and synchronous mode is selected.

The UCLK pin is used as the input for the serial shift clock supplied by an external
master. The transfer rate is determined by this clock and not by the internal bit rate
generator. The data, loaded into transmit shift register via transmit buffer UTXBUF
before start of UCLK, is transmitted on SOMI pin using the UCLK applied by the master.
Simultaneously the serial data applied to SIMO pin are shifted into the receive shift
register on the opposite edge of the clock.

The receive interrupt flag URXIFG indicates when data is received and transferred into
the receive buffer. The overrun error bit is set when previous received data is not read
before the new data is written to the receive buffer.

4 pin SPI slave mode, SYNC=1, MM=0, STC=0
In the 4 pin SPI mode the signal STE is used by the slave to enable transmit and receive
operation. The STE signal is used to enable the receive and transmit function of the
slave. It is applied from the SPI master. The receive and transmit operation is disabled
when the STE signal is high, and enabled when it is low. Whenever the STE signal
becomes high any started receive operation is halted, and continues when the STE
signal is low again. The STE signal is used to enable one slave to access the data lines.
The SOMI is input if STE is high.



USART Peripheral Interface, SPI Mode MSP430 Family

13-6

13

13.2 Interrupt and Control Function

The USART peripheral serves two main interrupt sources, the transmission and receive.
Two individual interrupt vectors are available, one for receive and one for transmit
interrupt events.

The control bits of the USART are located in the SFR address range:

• Receive Interrupt Flag URXIFG initial state reset (by PUC/SWRST)
• Receive Interrupt Enable URXIE initial state reset (by PUC/SWRST)
• Receive Enable URXE initial state reset (by PUC)
• Transmit Interrupt Flag UTXIFG initial state set (by PUC/SWRST)
• Transmit Interrupt Enable UTXIE initial state reset (by PUC/SWRST)
• Transmit Enable UTXE initial state reset (by PUC)

The receiver and transmitter of the USART operate in parallel and use the same baud
rate generator in synchronous master mode. In synchronous slave mode the external
clock - applied to UCLK - is used for receiver and transmitter.

13.2.1 USART Receive Enable

The Receiver Enable bit URXE enables or disables the receiver from collecting the bit
stream on the URXD/SOMI data line. Disabling the USART receiver (URXE=0) will stop
the receive operation after completing a started receive operation, or stop immediately if
no receive operation is active. In synchronous mode the clock UCLK does not shift any
data into the receiver shift register.

Receive when MSP430 is master
The receive operation is identical for 3-pin and 4-pin mode, when MSP430 USART is
selected to be SPI master.

Idle State
(Receiver
enabled)

Receive
disable

Receiver
collects

Character

URXE=0

URXE=1

URXE=0

URXE=0

not completed

Handle Interrupt
Conditions

character
received

URXE=1

URXE=1

No data written
to TXBUF

PUC

SWRST

Figure 13.4: State diagram on Receiver enable URXE. MSP430 is master



MSP430 Family USART Peripheral Interface, SPI Mode

13-7

13

Receive when MSP430 is slave, 3-pin mode
The receive operation is different for 3-pin and 4-pin mode when MSP430 USART is
selected to be SPI slave. In the 3-pin mode no external SPI receive control signal stops
a receive operation which has started. Power-up clear PUC, software reset SWRST or
receive enable URXE can stop a receive operation and reset the USART.

Idle State
(Receiver
enabled)

Receive
disable

Receiver
collects

Character

URXE=0

URXE=1

URXE=0

URXE=0

not completed

Handle Interrupt
Conditions

character
received

URXE=1

URXE=1

No clock at UCLK

ext. clock present

PUC

SWRST

Figure 13.5: State diagram on Receiver enable URXE. MSP430 is slave/3-pin mode

Note: URXE re-enable, SPI Mode

Since the receiver is completely disabled a re-enable of the receiver is
asynchronous to any data stream on the communication line. Synchronization to
the data stream should be handled by the software protocol as usual in 3-pin
SPI mode.



USART Peripheral Interface, SPI Mode MSP430 Family

13-8

13

Receive when MSP430 is slave, 4-pin mode
In the 4-pin mode the external SPI receive control signal applied to pin STE stops a
started receive operation. Power-up clear PUC, software reset SWRST or receive
enable URXE can stop a receive operation and reset the operation control state
machine. Whenever the STE signal is set to high, the receive operation is halted.

Idle State
(Receiver
enabled)

Receive
disable

Receiver
collects

Character

URXE=0

STE=0

URXE=0

URXE=0

not completed

Handle Interrupt
Conditions

character
received

URXE=1

URXE=1

No clock at UCLK

ext. clock present

PUC

SWRST

URXE=1 &

Figure 13.6: State diagram on Receiver enable URXE. MSP430 is slave/4-pin mode

13.2.2 USART Transmit Enable

The transmit enable bit UTXE enables or disables a character from being shifted onto
the serial data line. If this bit is reset, the transmitter is disabled but any active
transmission is not halted until all data previously written into the transmit buffer has
been sent. If the transmission is completed any further write to the transmitter buffer will
not result in a data transmission. When the UTXBUF was ready, a pending request for
transmission will remain, and this results in an immediate start of transmission when
UTXE is set and the transmitter is empty. A low signal on the STE signal removes the
active master (4-pin mode) from the bus. Low at STE indicates that another master
requests the active master function.

USART Transmit Enable, MSP430 is master



MSP430 Family USART Peripheral Interface, SPI Mode

13-9

13

Idle State
(Transmitter

enabled)

Transmit
disable

Transmission
active

UTXE=0

UTXE=1

UTXE=0

no data written
to transmit buffer

data written to

UTXE=0

not completed

Handle Interrupt
Conditions

character
transmitted

UTXE=1,

UTXE=1

transmit buffer

PUC

SWRST

Figure 13.7: State diagram on Transmitter enable, MSP430 is master

USART Transmit Enable, MSP430 is slave

Idle State
(Transmitter

enabled)

Transmit
disable

Transmission
active

UTXE=0

UTXE=1

UTXE=0

No clock at UCLK

UTXE=0

not completed

Handle Interrupt
Conditions

character
transmitted

UTXE=1,

UTXE=1

ext. clock present 

PUC

SWRST

Figure 13.8: State diagram on Transmitter enable, MSP430 is slave

When UTXE is reset any data can be written regularly into the transmit buffer, but no
transmission is started. Once the UTXE bit is set, the data in the transmit buffer are
immediately loaded into the transmit shift register and the transmission of the character
is started.

Note: Write to UTXBUF, SPI Mode

Data should never be written into the transmit buffer UTXBUF when it is not
ready (UTXIFG=0) but the transmitter is enabled (UTXE=1). The character
shifted out can be random.



USART Peripheral Interface, SPI Mode MSP430 Family

13-10

13

13.2.3 USART Receive Interrupt Operation

The receive interrupt flag URXIFG is set each time a character is received and loaded
into the receive buffer. Asynchronous conditions are not used.

URXIE

URXIFG

PUC
SWRST

URXBUF read

IRQA

Clear

Request_Interrupt_Service

OR

master overrun

URXS

Clear

URXSE
from URXD

Receiver collects character
Valid start bit

τ

SYNC

URXEIE

URXWIE
RXWAKE

character received

URXSE

SYNC = 1

SYNC

PE
FE

BRK

Figure 13.9: Receive Interrupt Conditions

URXIFG is reset at system reset PUC and at a software reset SWRST. URXIFG is reset
automatically if the interrupt is served or the receive buffer URXBUF is read. The
Receive Interrupt Enable bit URXIE enables, if set, serving of a pending interrupt
request. Both, the receive interrupt flag URXIFG and the receive interrupt enable bit
URXIE are reset with PUC and SWRST.

URXIFG=0

started,
GIE=0

URXIFG=0

wait for next
start

Interrupt
service

URXIFG=1
Receive 

Character
completed

URXE=1 PUC
URXIE=0

GIE=0

Priority
too
low

SWRST=1

URXIE=1 &

GIE=1 &

Priority valid

Figure 13.10: State diagrams on receive interrupt



MSP430 Family USART Peripheral Interface, SPI Mode

13-11

13

13.2.4 USART Transmit Interrupt Operation

The transmit interrupt flag UTXIFG is set by the transmitter to indicate that the
transmitter buffer UTXBUF is ready to accept another character. This bit is automatically
reset if the interrupt request service is started or a character is written into the UTXBUF.
This flag will assert a transmitter interrupt if the local (UTXIE) and general (GIE) interrupt
enable bits are set. The UTXIFG is set after system reset PUC or SWRST are removed.

UTXIE

UTXIFG

PUC or SWRST

UTXBUF written into transmit shift register

IRQA

character moved from
Clear

Request_Interrupt_Service

buffer to shift register

VCC
Set

D Q

Clear

Q

SWRST

SYNC = 1

Figure 13.11: Transmit Interrupt Condition

The transmit interrupt enable UTXIE bit controls the ability of the UTXIFG to request an
interrupt, but does not prevent the flag UTXIFG from being set. The UTXIE is reset with
PUC or software reset bit SWRST. The UTXIFG bit is set after system reset PUC or
software reset but the UTXIE bit is reset to ensure full interrupt control capability.



USART Peripheral Interface, SPI Mode MSP430 Family

13-12

13

13.3 Control and Status Register

The USART module hardware is byte structured and should be accessed by byte
processing instructions (suffix 'B').

Register short form Register type Address Initial state

• USART Control register UCTL Type of read/write   070h See ....
• Transmit Control register UTCTL Type of read/write   071h individual ...
• Receive Control register URCTL Type of read/write   072h bit description
• Modulation Control reg. UMCTL Type of read/write   073h unchanged
• Baud Rate register 0 UBR0 Type of read/write   074h unchanged
• Baud Rate register 1 UBR1 Type of read/write   075h unchanged
• Receive Buffer URXBUF Type of read/write   076h unchanged
• Transmit Buffer UTXBUF Type of read   077h unchanged

All bits are random after PUC unless otherwise noted by the detailed functional
description.
Reset of the USART is performed by PUC or SWRST bit. After power-up (PUC) the
SWRST bit remains set and the USART remains in this condition until the reset is
disabled by resetting the SWRST bit. The SPI mode is disabled after PUC.
The USART module operates in asynchronous or in synchronous mode defined by the
SYNC bit. The bits in the control registers may have different functions in the two
modes. All bits are described with their function in the synchronous mode - SYNC=1.
Their function in the asynchronous mode is described in the USART’s serial interface
UART mode section.

13.3.1 USART Control register

The information stored in the control register determines the basic operation of the
USART module. The register bits select the communication mode and number of bits
per character. All bits should be programmed according to the selected mode before
reset is disabled by resetting bit SWRST.

UCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
070h

7 0

SWRSTMMSYNCListenCHARunused unused unused

Figure 13.12: USART Control Register



MSP430 Family USART Peripheral Interface, SPI Mode

13-13

13

Bit 0: The USART state machines and operating flags are initialized to the reset
condition, if the software reset bit is set. Until the SWRST bit is reset, all
affected logic is held in the reset state. This implies that after a system reset
the USART must be re-enabled by resetting this bit.

Bit 1: Master mode is selected when the MM bit is set. The USART module slave
mode is selected when the MM bit is reset.

Bit 2: Peripheral module mode select.
The SYNC bit selects the function of the USART peripheral interface
module. Some of the USART control bits will have different functions in
UART and SPI mode.
SYNC = 0 : UART function is selected.
SYNC = 1 : SPI function is selected.

Bit 3: The Listen bit selects if internally the transmitted data is fed back into the
receiver

Bit 4: Character length.
This register bit selects the length of the character to be transmitted as 7 or
8 bits.
CHAR = 0 : 7 bit data.
CHAR = 1 : 8 bit data.

Bit 5: unused
Bit 6: unused
Bit 7: unused

13.3.2 Transmit Control Register UTCTL

The register controls the USART hardware associated with transmitter operation.

UTCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
071h

7 0

TXEPTSTCunusedSSEL1CKPL SSEL0CKPH unused

Figure 13.13: USART Transmitter Control Register

Bit 0: The transmitter empty TXEPT flag is set when the transmitter shift register
and UTXBUF are empty, and reset, when data is written to UTXBUF. It is
set on SWRST.

Bit 1: The slave transmit control bit STC selects if the signal at STE pin is used in
the master and slave.
STC = 0: Four pin mode of SPI is selected. The STE signal is used by

the master to avoid bus conflicts or it is used in slave mode
to control transmit and receive enable.

STC = 1: Three pin SPI mode. STE is not used in master mode nor in
slave mode.

Bit 2: unused



USART Peripheral Interface, SPI Mode MSP430 Family

13-14

13

Bit 3: unused
Bit 4,5: Source Select 0 and 1.

The source select bits define - only when master mode is selected - which
clock source is used for the baud rate generation:
SSEL1,SSEL0 0 external clock selected, UCLK

1 auxiliary clock selected, ACLK
2, 3 main system clock selected, MCLK

In master mode (MM=1) an external clock at UCLK can not be selected
since the master applies the UCLK signal for any slave.
In the slave mode the bits SSEL1 and SSEL0 are not relevant. The external
clock UCLK is always used.

Bit 6,7: Clock polarity CKPL and Clock Phase CKPH.
The CKPL bit controls the polarity of the SPICLK signal.
CKPL = 0: the inactive level is low; data is output with the rising edge of

UCLK; input data is latched with the falling edge of UCLK.
CKPL = 1: the inactive level is high; data is output with the falling edge

of UCLK; input data is latched with the rising edge of
SPICLK.

The CKPH bit controls the polarity of the SPICLK signal.
CKPH = 0: normal UCLK clocking scheme.
CKPH = 1: UCLK is delayed by one half cycle.

1 2 3 4 5 6 7 8CYCLE #

SIMO/

Sample Points

* MSB LSB

* previous data bit

SOMI

UCLK

UCLK

UCLK

UCLK

SIMO/ MSB LSB
SOMI

TXBUF
Data to

*

Receive

CKPL CKPH
   0        0

   1        0

   0        1

   1        1

   x        0

   x        1

Figure 13.14: USART Clock Phase and Polarity

When operating with the CKPH bit set, the USART (synchronous mode) makes the first
bit of data available after the transmit shift register is loaded and before the first edge of
UCLK. Data is latched on the first edge of the UCLK and transmitted on the second
edge in this mode.



MSP430 Family USART Peripheral Interface, SPI Mode

13-15

13

13.3.3 Receive Control Register URCTL

The register URCTL controls the USART hardware associated with receiver operation
and holds error conditions.

URCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
072h

7 0

OE unused unused undef.undef.undef.FE undef.

Figure 13.15: USART Transmitter Control Register

Bit 0: undefined, driven by USART hardware
Bit 1: undefined, driven by USART hardware
Bit 2: unused
Bit 3: unused
Bit 4: undefined, driven by USART hardware
Bit 5: The overrun error flag bit OE is set when a character is transferred into

URXBUF before the previous character has been read. The previous
character is overwritten and lost. OE is reset by SWRST, system reset, by
reading the URXBUF and by instruction.

Bit 6: undefined, driven by USART hardware
Bit 7: Frame error. The FE bit is set when a bus conflict stopped an active master

with a negative transition of the signal applied to pin STE - only when 4-pin
mode is selected. FE is reset by SWRST, system reset, by reading the
URXBUF and by instruction.

13.3.4 Baud Rate Select and Modulation Control Registers

The baud rate generator uses the content of both baud rate select registers UBR1 and
UBR0 to generate the bit timing for the serial data stream. The smallest division factor is
two.

UBR0

rw rw rw rw rw rw rw rw
074h

7 0

2

UBR1

rw rw rw rw rw rw rw rw
075h

7 0

7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

215 214 213 212 211 210 2 9 2 8

Figure 13.16: USART Baud Rate Select Register



USART Peripheral Interface, SPI Mode MSP430 Family

13-16

13

Baudrate = 
BRCLK

UBR +  
1
n

mi
i

n

∑
with UBR= [UBR1,UBR0]

The maximum baud rate that can be selected for transmission in master mode is half of
the clock input frequency of the baud rate generator. In slave mode, it is determined by
the external clock applied to UCLK.

The modulation control is not used for serial synchronous communication. It is
recommended to keep it reset (bits m0 to m7 are 0).

UMCTL

rw rw rw rw rw rw rw rw
073h

7 0

m7 m6 m4 m3 m2 m1 m0m5

Figure 13.17: USART Modulation Control Register

13.3.5 USART Receive Data Buffer URXBUF

The receiver buffer URXBUF contains previous data from the receiver shift register.
URXBUF is cleared by SWRST or PUC. Reading URXBUF resets the receive error bits
and receive interrupt flag URXIFG.

URXBUF

r r r r r r r r
076h

7 0

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

Figure 13.18: USART Receive Buffer

In 7-bit length mode the MSB of the URXBUF is always reset.

13.3.6 USART Transmit Data Buffer UTXBUF

The transmit buffer contains current data to be transmitted by the transmitter.

UTXBUF

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
077h

7 0

2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

Figure 13.19: USART Transmit Buffer



MSP430 Family USART Peripheral Interface, SPI Mode

13-17

13

The UTXIFG bit indicates that UTXBUF is ready to accept another character for
transmission.
In master mode, the transmission will be initialized by writing data to UTXBUF. The
transmission of this data is started immediately, if the transmitter shift register is empty
or is going to be empty.
When seven bits/character is selected the data moved into the transmit buffer should be
left adjusted since the MSB is shifted out first.



USART Peripheral Interface, SPI Mode MSP430 Family

13-18

13



MSP430 Family Liquid Crystal Display Drive

14-1

14

14 Liquid Crystal Display Drive

Topic Page

14.1 Basics of LCD Drive 14-3

14.2 LCD Controller/Driver 14-8

14.3 LCD Port Function 14-25

14.4 Application Example showing mixed LCD and Port Mode 14-27



Liquid Crystal Display Drive MSP430 Family

14-2

14



MSP430 Family Liquid Crystal Display Drive

14-3

14

14.1 Basics of LCD Drive

Liquid crystal displays use ambient luminescence to display information and do not send
out light actively. This results in low power consumption. The requirement for visible
displayed information is sufficient ambient luminescence.

The liquid crystal must be driven with alternating voltage. DC drive would destroy the
liquid crystal. This AC drive requirement is the main factor for any power consumption.
The electrical equivalence for the driving stage is a capacitor. Its electrodes are the back
plane or common plane, controlled by signal COMn and the segment driven by SEGn.
The frequency of the AC drive is low - in the range of 1000 Hz to 30 Hz. The data sheets
of the LCD manufacturer give defined ranges for this frequency.

Different methods of controlling LC displays were developed in the past. The different
driving methods are applied as a compromise between number of segments, number of
pins at display and driving source, LCD contrast, temperature range, ......
Multiplexing methods reduce the number of pins needed.

The MSP430 Family's LCD module supports four driving methods:
• Static
• 2MUX or 1/2 duty, 1/2 bias
• 3MUX or 1/3 duty, 1/3 bias
• 4MUX or 1/4 duty, 1/3 bias.

The static method needs one pin for common plane (COM0) and one pin for each
segment:

#-of-pins = 1 + #-of-segments

The 2MUX method needs two pins for common plane (COM0, COM1) and one pin for
two segments:

#-of-pins = Integer [2 + (#-of-segments/2)]

The 3MUX method needs three pins for common plane (COM0, COM1, COM2) and one
pin for three segments:

#-of-pins = Integer [3 + (#-of-segments/3)]

The 4MUX method needs four pins for common plane (COM0, COM1, COM2, COM3)
and one pin for four segments:

#-of-pins = Integer [4 + (#-of-segments/4)]

The increase of the multiplex rate reduces the  number of pins required. The continuous
reduction of pin counts is demonstrated by an application that uses 80 segments:

Static method: #-of-pins = (1 + 80) = 81
2MUX: #-of-pins = (2 + 80/2) = 42
3MUX: #-of-pins = (3 + 80/3) = 30
4MUX: #-of-pins = (4 + 80/4) = 24



Liquid Crystal Display Drive MSP430 Family

14-4

14

Static Driving Method

In the static drive method each segment line drives one segment.
The example shows one digit of the liquid crystal displaying ‘5’, including an example of
the connections together with the output wave forms.

VDD

VDD

VDD

VDD

-VDD

0V

COM0

SEG

SEGn+1

n

nCOM0 - SEG     Segment selected

n+1COM0 - SEG       Segment non-selected

0V

COM0

SEGn

SEGn+3

SEGn+7

SEGn+2

SEGn+1

SEGn+4

SEGn+5

SEGn+6

GND

GND

GND

fframe

Figure 14.1:  Example of static wave form drive



MSP430 Family Liquid Crystal Display Drive

14-5

14

Two MUX, ½ Bias

In the 2MUX drive each segment line drives two segments.
The example shows one digit of the liquid crystal display displaying '5', including an
example of the connections, together with the output wave forms.

VDD

VDD

VDD

VDD

-VDD

COM0

SEG

SEGn+1

n

n+1COM0 - SEG       Segment selected

0V

COM0

SEGn+2

SEGn+1SEGn+3

SEGn

GND

GND

GND

COM1

VDD

GND

COM1

VDD

-VDD

n+1COM1 - SEG       Segment non-selected

0V

V      /2DD

V      /2DD

V      /2DD

V      /2DD

f
frame

V =VDD/23

V =VDD/23

Figure 14.2: Example of 2MUX wave form drive



Liquid Crystal Display Drive MSP430 Family

14-6

14

Three MUX, 1/3 Bias

In the 3MUX drive each segment line drives three segments.
The example shows one digit of the liquid crystal display displaying '5', including an
example of the connections, together with the output wave forms.

VDD

VDD

VDD

-VDD

SEGn

nCOM0 - SEG    Segment non-selected

0V

COM0

SEGn+1

SEGn+2SEGn

GND

GND

COM2

VDD

GND

COM1

VDD

-VDD

n+1COM0 - SEG       Segment selected

0V

COM0

COM1

VDD

GND

COM2

VDD

GND
SEGn+1

VDD

SEGn+2 GND

fframe

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

Figure 14.3: Example of 3MUX wave form drive



MSP430 Family Liquid Crystal Display Drive

14-7

14

Four MUX, 1/3 Bias

In the 4MUX drive each segment line drives four segments.
The example shows one digit of the liquid crystal display displaying '5', including an
example of the connections, together with the output wave forms.

VDD

VDD

VDD

-VDD

SEGn

nCOM1 - SEG     Segment non-selected

0V

COM0

SEGn

SEGn+1

GND

GND

COM3

VDD

GND

COM1

VDD

-VDD

n+1COM1 - SEG       Segment selected

0V

COM0

COM1

VDD

GND

COM2

VDD

GND

SEGn+1

VDD

GND

COM3

COM2
fframe

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

32/V2= VDD
V4=1/3VDD

Figure 14.4: Example of 4MUX wave form drive



Liquid Crystal Display Drive MSP430 Family

14-8

14

14.2 LCD Controller/Driver

The LCD controller/driver peripheral generates the segment and common signals
according to the data in the display data memory. It contains all functional blocks to drive
an external directly connected LCD. The main blocks in the LCD peripherals are:

• Data memory containing the segment information
• Timing generator
• Module bus interface
• LCD   Module  Analog voltage applied externally
• LCD+ Module only: Analog voltage generator internally

Mux

Display

Memory

LCD

Control

&

Mode

Register

Timing GeneratorfLCD

15 x 8 bit

Output

Control

LCDM0 LCDM4LCDM3

Group7

Segment

Seg 2

Seg 1

Seg 0

Group1-7

LCDM2

LCDM1

7

ADR: 30h

COM3

COM2

COM1

COM0

ADR 31h - 3Fh

Group1

PUC

Group1-7

DCTL

Multiplexer

Analog Voltage

Common

Output

Control

Mux

Mux

Mux

S29/029

S2/02

S1

S0

OscOff

DCTL

R23

R13

R03

R33

not there
with LCD+

Group1-7

Module

7

Figure 14.5: LCD Controller/Driver Block Diagram



MSP430 Family Liquid Crystal Display Drive

14-9

14

Differences between LCD Module and LCD+ Module:

LCD Module LCD+ Module

• Analog Voltage Generation external internal
options:
• 2 inputs R23, R13

V1 = VCC
V5 = VSS

• 3 inputs R23, R13, R03
V1 = VCC

• 4 inputs R33, R23, R13, R03

• Control bit LCDM1 unused selects impedance
of R-Ladder

• Control bit LCDM0 • stops timing generator • stops timing
generator

• stops current
through R-Ladder

14.2.1 LCD Controller/Driver Functions

The functions of the LCD Controller/Driver are:

• Reads automatically data from the display memory, and generates the segment and
common signals

• Four different display modes are selectable:
Static mode
2MUX , 1/2 bias
3MUX , 1/3 bias
4MUX , 1/3 bias.
Within the basic timer BT, there are two bits to select one of four different frame
frequencies.

• Segment signal outputs can be switched to an output port
• Display memory not used for segment information can be used as a normal memory.
• Operation via the basic timer with the auxiliary clock (ACLK).
• LCD+ Module only:

Resistive network to supply the analog voltage levels for LCD drive
One bit in the control register LCDCTL controls the switch through which the resistive
network is connected with V1.

The frame frequency of the LCD lines is:

• Static method: fframe =  
1
2

 x fLCD

• 2MUX: fframe =  
1
4

 x fLCD

• 3MUX: fframe =  
1
6

 x fLCD

• 4MUX: fframe =  
1
8

 x fLCD



Liquid Crystal Display Drive MSP430 Family

14-10

14

LCD+ Module:

The analog voltage is generated internally.

When the OSCOff bit in the status register is set, the power supply to the resistor
network is switched off independently of the LCDM0 bit.

During static mode, the analog generator is switched to be inactive, since the static
mode uses only V1 and V5 levels. Supply current consumption is reduced.

VCC

V2

V3

V4

V5

Analog levels

COMnSegn

LCDM1

ANALOG   MUX

VA VB VC VD Ron

LCDM0
LCDM3
LCDM4
OSCOFF

2
3

VCC

1

VSS

R

R

R

R

R

R

CTLV1

VSS

V1

LCD Phases

LCDM0OSCOFF LCDM4 LCDM3 VA VB VC VD RON CTLV1

0
X
1
1
1

X
1
0
0
0

X
X
0
0
1

X
X
0
1
X

0 0 0 0
0 0 0 0

OFF
OFF

V5/V1
V5/V1
V5/V1

V1/V5
V1/V5
V2/V4

V5/V1
V3/V3
V4/V2

V1/V5
V1/V5
V1/V5

OFF
ON
ON

1*
1*
3*
2*
2*

* to the position of the switch

Figure 14.6:  Internal analog voltage generated by LCD+ Module



MSP430 Family Liquid Crystal Display Drive

14-11

14

LCD Module:

The analog voltage is supplied externally, applied on pins R33**, R23, R13, R03**.

V2

V3

V4

V5

Analog levels

COMnSegn

ANALOG   MUX

VA VB VC VD Ron

LCDM0
LCDM3
LCDM4
OSCOFF

V1

LCD Phases

LCDM0OSCOFF LCDM4 LCDM3 VA VB VC VD RON

0
X
1
1
1

X
1
0
0
0

X
X
0
0
1

X
X
0
1
X

0 0 0 0
0 0 0 0

OFF
OFF

V5/V1
V5/V1
V5/V1

V1/V5
V1/V5
V2/V4

V5/V1
V3/V3
V4/V2

V1/V5
V1/V5
V1/V5

OFF
ON
ON

* to the position of the switch

R33**
VCC

R23
VSS

R13
VSS

R03**
VSS

Mode 
static

R

R

R

R

R

2Mux
4Mux

** Supply pins for V1 and V5 are optional. Devices without R33 and R03 pins will have V1 
External resistor ladder should be connected to VCC tied to VCC and V5 tied to VSS.

VCC

and VSS.

3Mux

*

Figure 14.7: External analog voltage applied to LCD Module

Note: ** Supply pins R33 and R03 are optional. Please see device data-sheet.



Liquid Crystal Display Drive MSP430 Family

14-12

14

14.2.2 LCD Control & Mode Register

The content of the LCD control & mode register defines the different operating
conditions. The LCD module is byte structured and should be accessed by byte
instructions (suffix .B).

LCDCTL

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

LCDM7 LCDM5LCDM6
030h

LCDM4 LCDM3 LCDM2 LCDM1 LCDM0

7 0

LCDM0: LCDM0 = 0: The timing generator is switched off.
Common and segment lines are "L".
Outputs selected for port output lines are not affected.
LCD+ Module: Power supply to resistor network is off.

LCDM0 = 1: Common and segment lines output the signal
corresponding to the display memory.
Outputs selected for port output lines are not affected.
LCD+ Module: Power supply to resistor network is switched
on at 2MUX, 3MUX and 4MUX not at static mode.

LCDM1: This bit selects the LCD drive magnitude, by selecting the internal
resistance of the Analog Generator. It is only valid along with the LCD+
Module.
LCDM1 = 0 : High impedance of Analog Generator.
LCDM1 = 1 : Low impedance of Analog Generator.

LCDM2,3,4: These three bits select the display mode and can switch the segment
output to non-selected level.

LCDM4 LCDM2

0

1

1

1

1

X

0

0

1

1

2MUX mode

3MUX mode

4Mux mode

1/2

1/3

1/3

Display mode

Static mode

Bias, LCD +

1/1

Not affected, Display is off - all Segment signals are 

LCDM3

X

0

0

1

1

non-selected level. The port outputs remain stable  

Bias, LCD

R33*, R03*

R33*, R13, R03*

R33*, R23, R13, R03*

R33*, R23, R13, R03*

* optional pins

The signal LCDM2 disables (0) or enables (1) the segment lines. This is
done with an AND combination with each individual segment information.
It is located in the parallel serial conversion block between the output of
the display memory and the segment output control. The segment
information in the display memory remains.
The major purpose of this function is to support applications with flashing
displays.



MSP430 Family Liquid Crystal Display Drive

14-13

14

LCDM5,6,7: The information of the three bits selects groups of outputs to carry
segment information or bit port information. The outputs selected for port
function are driven with the state of the display memory bit, and are no
longer part of the LCD segment lines.

LCDM7 LCDM6 LCDM5

S0-S1 S2-S5 S14-S17 S18-S21 S22-S25 S26-S29

Group0

S22-S25S18-S21

S18-S21

S14-S17

S14-S17

S14-S17

S10-S13

S10-S13

S10-S13

S10-S13

S10-S13

S6-S9

S6-S9

S6-S9

S6-S9

S6-S9

S6-S9

S2-S5

S2-S5

S2-S5

S2-S5

S2-S5

S2-S5

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

Group1 Group2 Group3 Group4 Group5 Group6 Group7

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29O22-O25

O22-O25

O22-O25

O22-O25

O22-O25

O22-O25

O18-O21

O18-O21

O18-O21

O18-O21

O18-O21

O14-O17

O14-O17

O14-O17

O14-O17

O10-O13

O10-O13

O10-O13

O6-O9

O6-O9O2-O5

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

reset
condition

Note: LCD control bits

The control bits LCDM5 ... LCDM7 are reset with PUC.

Function Seg: The Sxx signals are part of the display driving signals, and carry
modulated voltage levels according to the time frame of the
common lines.

Function Port: The signals selected for 'port' function are static signals. They
take two digital levels according to bits in the display memory.
The logical state of the bits is taken from bit 0 to bit 3 for even
S-lines (n=3,5,.....) and from bit 4 to bit 7 for odd S-lines
(n=2,4,.....).

Segment

Information
LCDM2

Segment

Information To output control

LCDM2

Groupn
(1-7)

To output control

S0, S1

S2 - S29

:

:

Figure 14.8:  Information control



Liquid Crystal Display Drive MSP430 Family

14-14

14

14.2.3 LC Display Memory

The LC Display Memory holds the information to be displayed during all operating and
power down modes. The bits in the memory are directly attached to the segments of the
liquid crystal display. The figures displayed at the LCD are decoded by the software from
the BCD or binary representation to the segment/common combination of the individual
display. The bit information in the memory matches with one common line and one
segment line. The bit information in the memory corresponds to the selection of
segments - a bit set in the memory is identical with segment selection 'on' and reverse.

One segment line carries the on/off state of one to four segments depending on the
multiplex rate:

Static drive -> state of one segment/segment line
2MUX drive -> state of two segment/segment line
3MUX drive -> state of three segment/segment line
4MUX drive -> state of four segment/segment line

The timing generator of the LCD controller/driver drives the conversion of the parallel
information stored in the LC Display Memory into the serial information required for the
segment line signal. The bits of the LC Display Memory are hard wired to the common
lines:

Static drive -> COM0: Bit 0 to Sn, Bit 4 to Sn+1
2MUX drive -> COM0: Bit 0 to Sn, Bit 4 to Sn+1, COM1: Bit 1 to Sn, Bit 5 to Sn+1
3MUX drive -> COM0: Bit 0 to Sn, Bit 4 to Sn+1, COM1: Bit 1 to Sn, Bit 5 to Sn+1

COM2: Bit 2 to Sn, Bit 6 to Sn+1
4MUX drive -> COM0: Bit 0 to Sn, Bit 4 to Sn+1, COM1: Bit 1 to Sn, Bit 5 to Sn+1

COM2: Bit 2 to Sn, Bit 6 to Sn+1, COM3: Bit 3 to Sn, Bit 7 to Sn+1

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB 03xh

3 2 1 0 3 2 1 0

Sn+1 Sn

A

B }G 0
3

A

B{G
0
3

Parallel -

Serial

Conversion

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

MDB

aeh g f d c b

Static 2MUX 3MUX 4MUX

0

0

0

0

1

0

0 1 0

0 0 1

0 1 0

0 0 1

1

1

A

B

Figure 14.9: Bits of Display Memory attached to Segment lines



MSP430 Family Liquid Crystal Display Drive

14-15

14

Display memory using the static driving method

The static driving method uses one common line. The active common line is COM0. In
this mode BIT0 and BIT4 are used for segment information. The other bits can be used
like any other memory.

The maximum number of segments is 30.

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB 03Fh

03Eh

03Dh

03Ch

03Bh

03Ah

039h

038h

037h

036h

035h

034h

033h

032h

031h

(3) (2) (1) 0 (3) (2) (1) 0

28n =

26

24

22

20

18

16

14

12

10

8

6

2

0

4

Sn+1 Sn

ab--

cd

ef

gh

ab

cd

ef

gh

ab

cd

ef

gh

ab

cd

ef

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

A

B }G 0
3

A

B{G
0
3

Parallel -

Serial

Conversion

Fifteen times

included

a

b

c

d

e

f g

h

Digit 1

a

b

c

d

e

f g

h

Digit 2

Digit 3

Digit 4 (.75)

MDB

Figure 14.10: Use of Display Memory with the static driving method



Liquid Crystal Display Drive MSP430 Family

14-16

14

Display memory using 2MUX, 1/2 bias driving method

The 2MUX driving method uses two common lines. The active common lines are COM0
and COM1. In this mode the BIT0, BIT1, BIT4 and BIT5 are used for segment
information. The other bits can be used like any other memory.

The maximum number of segments is 60.

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB 03Fh

03Eh

03Dh

03Ch

03Bh

03Ah

039h

038h

037h

036h

035h

034h

033h

032h

031h

(3) (2) 1 0 (3) (2) 1 0

28n =

26

24

22

20

18

16

14

12

10

8

6

2

0

4

Sn+1 Sn

a

c

--

eg--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

d

h --

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

A

B }G 0
3

A

B{G
0
3

Parallel -

Serial

Conversion

Fifteen times

included

a

b

c

d

e

f g

h

Digit 1

a

b

c

d

e

f g

h

MDB

b f

Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

1/2 Digit 8

a

c d

f

a

c d

f

a

c d

f

a

c d

f

a

c d

f

a

c d

f

a f

eg

hb

eg

hb

eg

hb

eg

hb

eg

hb

eg

hb

hb

Figure 14.11: Use of Display Memory with the 2MUX method



MSP430 Family Liquid Crystal Display Drive

14-17

14

Display memory using 3MUX, 1/3 bias driving method

The 3MUX driving method uses three common lines. The active common lines are
COM0, COM1 and COM2. In this mode BIT0, BIT1, BIT2, BIT4, BIT5 and BIT6 are used
for segment information. The other bits can be used like any other memory.

The maximum number of segments is 90.

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB 03Fh

03Eh

03Dh

03Ch

03Bh

03Ah

039h

038h

037h

036h

035h

034h

033h

032h

031h

(3) 2 1 0 (3) 2 1 0

28n =

26

24

22

20

18

16

14

12

10

8

6

2

0

4

Sn+1 Sn

a d-- g

a

--

--

f

c

Y

e

b

--

--

--

c

Y

f

A

B }G 0
3

A

B{G
0
3

Parallel -

Serial

Conversion

Fifteen times

included

a

b

c

d

e

f g

h

Digit 1

a

b

c

d

e

f g

h

MDB

b h

dgh

e
Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

Digit 8

Digit 9

Digit 10

y y

a d-- g

a

--

--

f

c

Y

e

b

--

--

--

c

Y

f b h

dgh

e

a d-- g

a

--

--

f

c

Y

e

b

--

--

--

c

Y

f b h

dgh

e

a d-- g

a

--

--

f

c

Y

e

b

--

--

--

c

Y

f b h

dgh

e

a d-- g

a

--

--

f

c

Y

e

b

--

--

--

c

Y

f b h

dgh

e

Figure 14.12: Use of Display Memory with the 3MUX method



Liquid Crystal Display Drive MSP430 Family

14-18

14

Display memory using 4MUX, 1/3 bias driving method

The 4MUX driving method uses four common lines. The active common lines are
COM0, COM1, COM2 and COM3. In this mode BIT0, BIT1, BIT2, BIT3, BIT4, BIT5,
BIT6 and BIT7 are used for segment information.

The maximum number of segments is 120.

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB 03Fh

03Eh

03Dh

03Ch

03Bh

03Ah

039h

038h

037h

036h

035h

034h

033h

032h

031h

3 2 1 0 3 2 1 0

28n =

26

24

22

20

18

16

14

12

10

8

6

2

0

4

Sn+1 Sn

a eh gf dc

A

B }G 0
3

A

B{G
0
3

Parallel -

Serial

Conversion

Fifteen times

included

a

b

c

d

e

f g

h

Digit 1

a

b

c

d

e

f g

h

MDB

b

Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

Digit 8

Digit 9

Digit 10

Digit 11

Digit 12

Digit 13

Digit 14

Digit 15a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

a eh gf dcb

Figure 14.13: Use of Display Memory with the 4MUX method



MSP430 Family Liquid Crystal Display Drive

14-19

14

14.2.4 Software Examples for LCD Operation

The examples in this paragraph demonstrate the software to display digits on the LCD.
They used the standard nomenclature of 7-segment digits.

Software for 4MUX, 1/3 bias LCD

.sect "lcd4mux",0f000h
; The 4MUX rate is the most easy-to-handle display rate. All eight segments of a digit
; are located in one display memory byte
;
a .EQU 080h
b .EQU 040h
c .EQU 020h
d .EQU 001h
e .EQU 002h
f .EQU 008h
g .EQU 004h
h .EQU 010h
;
; The  LSDigit of register Rx (000m) should be displayed.
; The Table represents the 'on'-segments according to the content of Rx.
;

...........
LCD1 .EQU 00031h ; Address of LC Display Memory

...........

...........
LCD15 .EQU 0003Fh

...........

; ...........
...........
MOV.B Table(Rx),&LCDn ; n = 1 ..... 15

; all eight segments are written to the
; display memory

...........

...........
;
Table .BYTE a+b+c+d+e+f ; displays "0"

.BYTE b+c ; displays "1"

...........

...........

.BYTE b+c+d+e+g ; displays "d"

.BYTE a+d+e+f+g ; displays "E"

.BYTE a+e+f+g ; displays "F"



Liquid Crystal Display Drive MSP430 Family

14-20

14

Software for 3MUX, 1/3 bias LCD

                .sect "lcd3mux",0f000h
; The 3MUX rate supports nine segments instead of eight segments for each digit.
 ; The nine segments of a digit are located in 1 ½  display memory bytes.
;
a .EQU 0040h
b .EQU 0400h
c .EQU 0200h
d .EQU 0010h
e .EQU 0001h
f .EQU 0002h
g .EQU 0020h
h .EQU 0100h
Y .EQU 0004h
; The  LSDigit of register Rx (000m) should be displayed.
; The Table represents the 'on'-segments according to the LSDigit of register of Rx.
; The register Ry is used for temporary memory
;
LCD1 .EQU 00031h

...........
LCD15 .EQU 0003Fh

...........

...........
ODDDIG RLA Rx

MOV Table(Rx),Ry ; Load segment information to
; temporary mem.
; (Ry) = 0000  0bch  0agd  0Yfe

MOV.B Ry,&LCDn ; write 'a, b, c, d, e, f' of Digit n
; (LowByte)

SWPB Ry ; (Ry) =  0agd  0Yfe  0000  0bch
BIC.B #07h,&LCDn+1 ; write 'b, c, h' of Digit n (HighByte)
BIS.B Ry,&LCDn+1
.....

EVNDIG RLA Rx
MOV Table(Rx),Ry ; Load segment information to

; temporary mem.
; (Ry) = 0000  0bch  0agd  0Yfe

RLA Ry ; (Ry) = 0000  bch0  agd0  Yfe0
RLA Ry ; (Ry) = 000b  ch0a  gd0Y  fe00
RLA Ry ; (Ry) = 00bc  h0ag  d0Yf  e000
RLA Ry ; (Ry) = 0bch  0agd  0Yfe  0000
BIC.B #070h,&LCDn+1
BIS.B Ry,&LCDn+1 ; write 'Y, f, e' of Digit n+1 (LowByte)
SWPB Ry ; (Ry) = 0Yfe  0000  0bch  0agd
MOV.B Ry,&LCDn+2 ; write 'b, c, h, a, g, d' of Digit n+1

; (HighByte)
...........



MSP430 Family Liquid Crystal Display Drive

14-21

14

Table .WORD a+b+c+d+e+f ; displays "0"
.WORD b+c ; displays "1"
...........
...........
.WORD a+e+f+g ; displays "F"



Liquid Crystal Display Drive MSP430 Family

14-22

14

Software for 2MUX, 1/2 bias LCD

                .sect "lcd2mux",0f000h
; All eight segments of a digit are located in two display memory bytes with the
; 2MUX display rate
;
a .EQU 002h
b .EQU 020h
c .EQU 008h
d .EQU 004h
e .EQU 040h
f .EQU 001h
g .EQU 080h
h .EQU 010h
; The register content of Rx (000m) should be displayed.
; The Table represents the 'on'-segments according to the content of Rx.
;

...........
;
LCD1 .EQU 00031h

...........

...........
LCD15 .EQU 0003Fh
;

...........

...........
MOV.B Table(Rx),Ry ; Load segment information to

; temporary mem.
MOV.B Ry,&LCDn ; (Ry) = 0000  0000  gebh  cdaf

; Note:
; All bits of an LCD memory byte are
; written

RRA Ry ; (Ry) = 0000  0000  0geb  hcda
RRA Ry ; (Ry) = 0000  0000  00ge  bhcd
MOV.B Ry,&LCDn+1 ; Note:

; All bits of an LCD memory byte are
; written

...........

...........
;
Table .BYTE a+b+c+d+e+f ; displays "0"

...........

.BYTE a+b+c+d+e+f+g+h ; displays "8"

...........

...........

.BYTE

...........
;



MSP430 Family Liquid Crystal Display Drive

14-23

14

Software for static LCD

                .sect "lcd1mux",0f000h
; All eight segments of a digit are located in four display memory bytes with the
; static display method.
;
a .EQU 001h
b .EQU 010h
c .EQU 002h
d .EQU 020h
e .EQU 004h
f .EQU 040h
g .EQU 008h
h .EQU 080h
; The register content of Rx should be displayed.
: The Table represents the 'on'-segments according to the content of Rx.
;

...........
;
LCD1 .EQU 00031h

...........

...........
LCD15 .EQU 0003Fh
;

...........

...........
MOV.B Table(Rx),Ry ; Load segment information to temporary

; mem.
; (Ry) = 0000  0000  hfdb  geca

MOV.B Ry,&LCDn ; Note:
; All bits of an LCD memory byte are written

RRA Ry ; (Ry) = 0000  0000  0hfd  bgec
MOV.B Ry,&LCDn+1 ; Note:

; All bits of an LCD memory byte are written
RRA Ry ; (Ry) = 0000  0000  00hf  dbge
MOV.B Ry,&LCDn+2 ; Note:

; All bits of an LCD memory byte are written
RRA Ry ; (Ry) = 0000  0000  000h  fdbg
MOV.B Ry,&LCDn+3 ; Note:

; All bits of an LCD memory byte are written
...........
...........

;



Liquid Crystal Display Drive MSP430 Family

14-24

14

Table .BYTE a+b+c+d+e+f ; displays "0"
.BYTE b+c ; displays "1"
...........
...........
.BYTE
...........



MSP430 Family Liquid Crystal Display Drive

14-25

14

14.3 LCD Port Function

The large number of LCD common and segment lines, together with the fixed number of
pins of the package version, could limit the degree of integration. To support
applications which require a reduced number of segments, the signals LCDM5 to
LCDM7 can switch the function from segment lines to output lines in groups of four bits.
These outputs can be used with the application for various functions. Bits in the display
memory define the logical state of the signals. The output signals are digitally switched,
either near to ground GND, or near to supply voltage VCC.

The nomenclature convention for signals used as segment lines is Sxx and as port
functions is Oxx. A pin is identified equally with the same xx representation. The letter S
or O states the function of that pin.

LCDM7 LCDM6 LCDM5

S0-S1 S2-S5 S14-S17 S18-S21 S22-S25 S26-S29

Group0

S22-S25S18-S21

S18-S21

S14-S17

S14-S17

S14-S17

S10-S13

S10-S13

S10-S13

S10-S13

S10-S13

S6-S9

S6-S9

S6-S9

S6-S9

S6-S9

S6-S9

S2-S5

S2-S5

S2-S5

S2-S5

S2-S5

S2-S5

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

S0-S1

Group1 Group2 Group3 Group4 Group5 Group6 Group7

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29

O26-O29O22-O25

O22-O25

O22-O25

O22-O25

O22-O25

O22-O25

O18-O21

O18-O21

O18-O21

O18-O21

O18-O21

O14-O17

O14-O17

O14-O17

O14-O17

O10-O13

O10-O13

O10-O13

O6-O9

O6-O9O2-O5

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

Reset
Condition

Figure 14.14:  Groups of Segment and Output Lines

Note: Control bits

The control bits LCDM5 ... LCDM7 are reset with PUC.

The segment signals Sxx are part of the display driving signals and carry modulated
voltage levels according to the time frame of the common lines.

The output signals Oxx selected for 'port' function are static signals. They take two
digital level according to bits in the display memory. The logical state of the bits is taken
from bit 0 to bit 3* for odd S-lines (n=3,5,.....) and from bit 4 to bit 7* for even S-lines
(n=2,4,.....).

* Bits taken are dependent on the MUX rate.



Liquid Crystal Display Drive MSP430 Family

14-26

14

3 2 1 0A

B }G 0
3

Parallel -

Serial

Conversion

Segment information

from Display Memory

Segment information

from Display Memory

Analog levels

Segn

Sxx

Segment /

Port  control
____

1

Oxx

0

Parallel -

Serial

Conversion

Analog levels

Segn

3 2 1 0 3 2 1 0A

B }G 0
3

A

B{G
0
3

Sxx/Oxx Sxx/Oxx

Analog Mux

Figure 14.15: Segment Line or Output Line

The logical information of an output Oxx is defined in the display memory. Its location is
either bit0 to bit3 or bit4 to bit7, depending on whether an odd or even assignment:
• xx = 2,4, ...... 28: Oxx is defined with bit0 to bit3
• xx = 3,5, ...... 29: Oxx is defined with bit4 to bit7



MSP430 Family Liquid Crystal Display Drive

14-27

14

14.4 Application Example showing mixed LCD and Port Mode

The example uses the mixed mode: 4MUX LCD drive for 13 digits and one port group
with four digital outputs.

COM 3 2 1 0 3 2 1 0

BIT 7 6 5 4 3 2 1 0

MAB

0003Fh

0003Eh

0003Dh

0003Ch

0003Bh

0003Ah

00039h

00038h

00037h

00036h

00035h

00034h

00033h

00032h

00031h aeh g f d c Digit 1

MDB

b

Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

Digit 8

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

aeh g f d c b

O26O27

O28O29

Digit 9

Digit 10

Digit 11

Digit 12

Digit 13

a

b

c

d

e

f g

h

a

b

c

d

e

f g

h

00030h 1 1 1 X 1 LCDM

Vbat

Vbat

Vbat

Vbat

O28O28O28O29O29O29

O26O26O26O27O27O27

1 1 0

S26

S29

S28

S27

S0S24S25 S1

Figure 14.16: Application Example

Note: LCD port output

Any LCD port output is defined with four bits. All four bits of the group should have
the same logical level, otherwise the output is not static. Assume O28 should be
'H', all the bit0 to bit3 are 'H'.

Software example to set O28, O29 should be unchanged
LCD15 .EQU 0003Fh

BIS.B 00Fh,&LCD15



Liquid Crystal Display Drive MSP430 Family

14-28

14



MSP430 Family Analog-To-Digital Converter

15-1

15

15 Analog-To-Digital Converter

Topic Page

15.1 Overview 15-3

15.2 Analog-to-Digital Operation 15-5

15.3 ADC Control Registers 15-15



Analog-To-Digital Converter MSP430 Family

15-2

15



MSP430 Family Analog-To-Digital Converter

15-3

15

Features of the A/D module:

• Eight Analog or Digital input channels

• Programmable (via external resistor REXT) current source on four analog pins

• Ratiometric or Absolute measurement

• Built in Sample-and-Hold

• End-Of-Conversion (EOC ) interrupt flag

• ADAT register holds conversion results until next Start-Of-Conversion (SOC)

• Low power consumption

• Converts standalone without further CPU processing overhead

• Programmable 12-bit or 14-bit resolution

• Four programmable ranges give 14-bit dynamic range

• Fast conversion time

• Large supply voltage range

• Monotonic over the entire A/D conversion range

15.1 Overview

The (12+2)-bit Analog-to-Digital converter is a peripheral module, accessed by word
instructions. The result of the converter is available on this 16-bit wide bus by reading
the ADAT register. It must be noted that when a conversion is started, the bits as they
are resolved by the converter are visible in the successive approximation register (SAR).
They are available immediately at the ADAT register and are not cleared until the next
conversion is initiated by setting the Start-Of-Conversion (SOC) bit in the ACTL register.
Since the SAR is transparent to the MDB the conversion progress can be monitored by
reading data via the read-only ADAT register. The SOC bit clears the SAR register for
the new result as well as starting the clock of the A/D converter for another conversion.



Analog-To-Digital Converter MSP430 Family

15-4

15

AVCC

AGND

SVCC

ADAT

MDB.7

MDB.6

MDB.5

MDB.4

MDB.3

MDB.2

MDB.1

MDB.0

MDB.8 to MDB.15

A0

A1

A2

A3

A4

A5

A6

A7

0

1

2

3

4

5

6

7

AIN reg.

AEN.x

AEN

MDB , 16bit

ACTL

ACTL.1,12

ACTL.2-5

Rext

AEN.0

AEN.7

ACTL.0

ACTL.12

Analog-to-Digital Converter

RC type

Figure 15.1: ADC Module Configuration

The module has eight individually selectable analog input channels that are multiplexed
to the converter's input circuitry, such that a conversion can be made on any one of
these channels at any time. Four of these channels, A0, A1, A2 and A3, are also
configured as four current source outputs whose values can be programmed by an
external resistor Rext. Any of these current source outputs can be turned on (one at a
time) to drive external sensors, in order to make ratiometric measurements. An absolute
measurement can also be made to the accuracy of the reference voltage, by applying an
external stable voltage source to the SVCC pin.

The eight channels can also be configured as analog or digital inputs. The digital data
can be presented at all eight channels or individually selected channels, by writing to the
respective bits of the AEN register. The digital data presented at the channels can be
read from the AIN register. When a sensitive analog conversion is being done, any
digital activity on adjacent channels will cause cross-talk and interference, leading to
noise and incorrect output codes.

The converter has two modes of operation depending on the status of bit11 of the ACTL
register, either a 12-bit or a (12+2)-bit conversion is possible. When the range of the
input signal is known, two bits from the ACTL register can be used to define the range
required with bit11 reset. The converter will sample the input, and then convert it to 12
bits of resolution, within any one of these four ranges. In this manual mode, this



MSP430 Family Analog-To-Digital Converter

15-5

15

effectively yields a 14 bit dynamic range of operation for the converter. However in the
Auto Mode, selected by setting bit11 of the ACTL register, the range is automatically
selected by the converter to resolve effectively to 14 bits. The input is sampled twice,
once for the 2-bit range selection and lastly for the remaining 12-bits of the conversion,
to give a (12+2)-bit result. In both modes, when a conversion is completed (End-Of-
Conversion EOC), the interrupt flag is set automatically to signal the microprocessor that
a conversion has been completed. The EOC signal also disables the clock for the A/D
converter, to conserve power until the next SOC bit is set.

Note: ADC, Start-of-Conversion

After starting a conversion it should always be completed before the next
conversion is initiated. Otherwise, unpredictable conversion data will result.

The microprocessor core communicates to the A/D via the internal bus system, by
applying the correct address for the module and supplying the required conditions for the
ACTL and AEN registers. It reads the conversion results back via the ADAT registers.

Under power-down the whole Analog-to-Digital converter shuts down to stop current
consumption. This is valid while SVCC is not externally driven. Upon a conversion start
or power-up signal, the converter wakes up, but may take up to 6 µs to reach steady
state conditions for an accurate conversion.

15.2 Analog-to-Digital Operation

15.2.1 A/D Conversion

After power-up, the ACTL register should be programmed to decide whether to make a
ratiometeric or absolute measurement, and whether the range is to be manually or
automatically selected. In manual mode, once the range bits have been selected these
bits can not be changed during the conversion, as this will invalidate the results.

Setting the Start-of-Conversion (SOC) bit in the ACTL register activates the clock for the
A/D converter for a new conversion to begin. The converter is based on a successive
approximation technique utilizing a resistor array to resolve the M most significant bits
(MSBs) first, and a switched capacitor array to resolve the remaining L least significant
bits (LSBs).

The resistor array consisting of 2M individually, equally weighted resistors forming the
DAC, and  the capacitor array consisting of L capacitors forms a charge redistribution
A/D. The capacitors are binary-weighted; that is, they increase from the smallest value in
powers of two. The number of capacitors corresponds to the range of the converter or L
bits of the digital output code.



Analog-To-Digital Converter MSP430 Family

15-6

15

The sequence starts by selecting the analog channel of interest and sampling the
analog input voltage onto the top plates of the capacitor array, the analog mux is then
disconnected from the A/D and the analog input need not be present anymore after this
sample period.

A successive approximation search is done on the resistor string to find the tap that
corresponds to being within 2L LSBs of VIN; this then gives the VH and VL voltages
across one element and has resolved the M MSBs. The capacitor array then resolves
this (VH-VL) difference voltage to L bits of resolution using a similar successive
approximation search on the capacitor array starting with the MSB capacitor.

This switching procedure continues with the MSB or largest capacitor to the smallest
(LSB) capacitor in the capacitor array, thereby the initial charge is redistributed among
the capacitors. The particular setting of the switches both in the resistor array and in
those connected to the bottom plates of the capacitors, has then induced a change on
the top plate that is as close to the input voltage VIN as possible, and the switch settings
then correspond to the binary code (12-bit or (12+2)-bit)  that represents the fraction
VIN/VREF.

The top plate voltage is monitored by a comparator with built-in input offset cancellation
circuitry, which senses whether the input voltage is less than or greater than the voltage
on the top plate, and generates a digital output which determines which way the
successive approximation search is to be performed.

The smallest voltage change (LSB) occurs when the smallest capacitor is switched in,
and this is the resolution of the converter, or VREF/2n where n is the number of bits.

When this sequence is completed, the top plate voltage is as close to zero as the
resolution of the converter allows and the LSB has been determined. An End-of-
Conversion (EOC) signal is then sent to indicate that a 12-bit or (12+2)-bit conversion
result is available for reading from the ADAT register for further processing.



MSP430 Family Analog-To-Digital Converter

15-7

15

AVCC

SVCC 

REXT

D
0.75SVCC

(OFF)
1:4

Pd
C RESISTOR

DECODE

RANGE
MUX

VH

VL

CAPACITOR
ARRAY

+

-

PD

DELAY

ACTL 2,4

8:1

A7 A0

Input Buffer AIN

INPUT
MUX

MDB 0-78

M 2

SAR

L

EOC

INPUT

OUTPUT BUFFER  ADAT

AVCC/2

-

+

ADCLK/12

ACTL.9,10

ACTL.11

ACTL.0

ACTL.1 (SVCC on)

ACTL.12 (Pd)

MDB, 16bit

Rext

generator

SVCC switch

Isource

A0
A1
A2
A3
A4
A5
A6
A7

B

A

AGND

2M

2M

2M

2M

Input Buffer Enable AEN

8 MDB 0-7

8

12/14

2        C(L-1)

C C 2C4C 8C

Control Register ACTL

16

AEN.0..7

ACTL.0ACTL.14SAR.0SAR.13

ACTL 6,7
ACTL 8

ACTL.5

ACTL.13

ACTL.14
: 1,  :2
: 3,  :4

: 12

MCLK

Figure 15.2: ADC Schematic

A/D conversion timing

After the ADC module has been activated with the Power Down bit reset, at least 6 µs
must elapse before a new conversion is attempted, in order to allow the correct internal
biases to be established.

The A/D converter always runs at a clock rate set to one twelfth of the ADCLK. The
frequency of ADCLK should be chosen to meet the conversion time defined in the actual
electrical characteristics. If the ADCLK is too fast an accurate conversion to 12 bits
cannot be guaranteed, due to internal time constants associated with sampling the
analog input and the conversion network. If the ADCLK is too slow a conversion
accurate to 12 bits cannot be guaranteed, due to charge loss within the capacitor array
of the A/D, even if the input signal is valid and steady for the required acquisition time.
The correct frequency for ADCLK can be selected by two bits (ADCLK) in the control
register ACTL. The applied MCLK clock signal is then divided by factor 1, 2, 3 or 4.



Analog-To-Digital Converter MSP430 Family

15-8

15

Sampling the analog input signal takes twelve ADCLK clock pulses and the 12-bit
conversion takes another twelve times seven (84) ADCLK clock cycles. This is true for a
12-bit conversion with pre-selected range; ACTL.11 is reset. Altogether the 12-bit
conversion takes 96 ADCLK cycles.

Power-up time

Converting N bits

A2D Mode,Range,

New

INPUT

12/ADCLK

PD

SOC

ADCLK/12

Sample

EOC

SAR.0..11

DATA Valid
and LATCHED

Start of Conversion

End of Conversion

A2D Activated

Channel selected

Conversion

valid

Figure 15.3: ADC Timing, 12-bit conversion

When ACTL.11 is set a (12+2)-bit conversion with auto range selected takes place. The
analog input signal is sampled twice, each taking twelve ADCLK clock pulses. After the
first sampling of the input signal, the range conversion is done and takes 24 ADCLK
clocks. After the second sampling of the input signal, the 12-bit conversion is done and
takes another 84 (12*7) ADCLK clock cycles. Altogether the (12+2)-bit conversion takes
132 ADCLK cycles.

Power-up time

Converting 12bits

A2D Mode,Range,

New

INPUT

12/ADCLK

PD

SOC

ADCLK/12

Sample

EOC

SAR.0..13

DATA Valid
and LATCHED

Start of Conversion

End-of-Conversion

A2D Activated

Channel selected

Conversion

valid
INPUT
valid

Convert 2bits

Figure 15.4: ADC Timing, (12+2)-bit conversion



MSP430 Family Analog-To-Digital Converter

15-9

15

The input signal must be valid and steady during this sampling period in order to obtain
an accurate conversion. It is also desirable not to have any digital activity on any
adjacent digital channels during the whole of the conversion period to ensure that errors
due to supply glitching and ground bounce or cross-talk interference do not corrupt the
results.

The A/D converter uses the charge redistribution method and thus when the inputs are
internally switched to sample the input, the switching action causes displacement
currents to flow into and out of the analog inputs.

ADCLK

Power-up time

Converting N bits

A2D Mode,Range, INPUT valid

1/ADCLK

PD

SOC

ADCLK/12

Sample

EOC

SAR.0..13

Sampling INPUT

Start of Conversion

A2D Activated

INPUT Sampling INPUT

Channel selected

Figure 15.5: ADC, input sampling timing

These current spikes or transients occur at the leading and falling edge of the internal
sample pulse, and quickly decay and settle before causing any problems, because the
time constant is less than that given by the internal 'effective RC'. Internally the analog
inputs see a nominal RC of effectively a 32 pF (C-array) capacitor in series with a 2-kΩ
resistor (Ron of switches). However if the external dynamic source impedance is large,
then these transients may not settle within the allocated sampling time to ensure 12 or
(12+2) bits of accuracy.

15.2.2 A/D Interrupt

When an A/D conversion is complete, the EOC signal goes high and activates the A/D
interrupt circuit by setting the interrupt flag ADIFG, which informs the rest of the system
when a conversion has been completed. An interrupt is requested when the enable bit
ADIE is set.



Analog-To-Digital Converter MSP430 Family

15-10

15

15.2.3 A/D Ranges

One of four ranges can be selected to yield a result with 12 bits of resolution within any
one given range. If the bit ACTL.11 is reset, effectively 14 bits of dynamic range are
possible. The range is defined prior to conversion start with the bits ACTL.9 and
ACTL.10. However if bit11 is set, then the converter will find the appropriate range
during the conversion by sampling the input twice, once for the range selection and
secondly for the 12-bit conversion, thereby giving overall a (12+2)-bit conversion result.

The ranges are:

0.00xVREF  ≤  VIN <  0.25xVREF Range A

0.25xVREF  ≤  VIN <  0.50xVREF Range B

0.50xVREF  ≤  VIN <  0.75xVREF Range C

0.75xVREF  ≤  VIN <  1.00xVREF Range D

where VREF is the voltage at the SVCC pin, either applied externally or that voltage
(close to AVCC ) derived by closing the SVCC switch with bit12 of the ACTL register.

After the proper range has been selected, the input channel, selected by the appropriate
bits in the control register, is connected to the input of the converter. The A/D converter
processes the signal at the selected input channel and the software can then access the
result of the conversion via the ADAT register.

The digital code (Decimal) expected within any one range is:

Ntyp = INT  
VIN 214

VREF
213 x ACTL .10 -  212  x ACTL .9

x
-

where ACTL.10 and ACTL.9 are bits 10 and 9 respectively in the ACTL register.

Thus for a 12-bit conversion:

0000h  ≤  N  ≤  0FFFh Range A
0000h  ≤  N  ≤  0FFFh Range B
0000h  ≤  N  ≤  0FFFh Range C
0000h  ≤  N  ≤  0FFFh Range D

and a (12+2)-bit conversion:

0000h ≤ N ≤ 3FFFh

Note:  ADC Offset voltage

Any offset voltage (Vio) due to voltage drops at the bottom or top of the resistor
array, caused by parasitic impedances to the SVCC pin or the ground AGND pin,
will distort the digital code output and the formula.



MSP430 Family Analog-To-Digital Converter

15-11

15

15.2.4 A/D Current Source

One of four analog I/Os can be used for the current source output. The current out of the
current source (Isource) can be programmed by an external resistor REXT and is then
available on pins A0, A1, A2 and A3, with the value:

Isource = (0.25 x SVCC)/Rext  where SVCC is the voltage at pin SVCC and Rext is the
external resistor between pins SVCC and Rext.

Therefore for ratiometric measurements the voltage (Vin) developed at the input to the
channel with the resistive elements (Channels A0, A1, A2 and A3 only) is:

Vin = (0.25 x SVCC) x (Rsens/Rext) where Rsens is the external resistive element.

AVCC

SVCC

Rext

D
0.75xSVCC

(OFF)
1:4

Pd
C RESISTOR

DECODE

ACTL 2,4

8:1

INPUT

INPUT

-

+

ACTL 8
ACTL 6,7

ACTL.1 (SVCC on)

ACTL.12 (Pd)

REXT

SVCC switch

Isource

A0
A1
A2
A3
A4
A5
A6
A7

B

A

AGND

2M

2M

2M

2M

Rsens

Figure 15.6: A/D Current Source



Analog-To-Digital Converter MSP430 Family

15-12

15

When the A/D converter is used in conjunction with resistive elements in sensor
applications, current sources of precise value are required, so that the input signal can
be referred back to the supply voltage or voltage reference in the same manner as the
current source, thereby allowing a ratiometric measurement to take place, independently
of the accuracy of the stable reference.

15.2.5 Analog Inputs and Multiplexer

Analog Inputs

The analog input signal is sampled onto an internal capacitor and held during the
conversion. The charge of the capacitance is supplied by the source and the time to
charge it up is defined by the sampling time of twelve ADCLK clocks. Therefore, the
external source resistances and dynamic impedances must be limited, so that the RC
time constant is short enough to allow the analog inputs to completely settle within the
allocated sampling time to a 12-bit accuracy. This is typically a time constant less than
0.8/fADCLK. High source impedances have an adverse effect on the accuracy of the
converter, not only due to the RC settling behavior, but also due to voltage drops at the
inputs due to leakage current or averaged DC input currents (due to input switching
currents). Typically for a 12-bit converter, the error in LSBs due to leakage current is:

Error(LSBs)  =  4*(µA of leakage current)*(kΩ of source resistance)/(volt of VREF)

Example: 50 nA leakage, 10 kΩ of source resistance, 3-V VREF gives 0.7 LSBs of error.

This also applies equally to the output impedance of the voltage reference source VREF
as well. It must be low enough to enable the transients to settle within (0.2/ADCLK)
seconds, and generate leakage current induced errors of <<1LSB.

Analog Multiplexer

The analog multiplexer selects one of eight single-ended input channels, as determined
by the bits in the ACTL register. It is based on a 'T-switch' to minimize the coupling
between channels corrupting the analog input. Channels that are not selected are
isolated from the A/D and the intermediate node connected to the analog ground AGND
so that the stray capacitance is 'grounded' to eliminate cross-talk.



MSP430 Family Analog-To-Digital Converter

15-13

15

R ~ 100Ohm

ESD protection

ACTL.9,10

Input

Figure 15.7: Analog Multiplexer

Cross-talk exists because there is always some parasitic coupling capacitance across
the switch and between switches. This can take several forms, such as coupling from
the input to the output of an 'OFF' switch, or coupling from an 'OFF' analog input channel
to the output of another adjacent 'ON' output channel, causing errors to creep into the
digital code output. So for high accuracy conversions, cross-talk interference must be
minimized altogether, by shielding and other well-known printed circuit board (PCB)
layout techniques.

15.2.6 A/D Grounding and Noise Considerations

As with any high resolution converter (≥ 12 bits) care and special attention has to be
paid to the printed circuit board layout and the grounding scheme, to eliminate ground
loops and any unwanted parasitic components/effects and noise. There are standard
techniques which are well documented in application notes that address these issues.

Ground Loops are formed when the return current from the resistor divider of the A/D
flows through tracks that are common with other analog or digital circuitry. If care is not
taken, this current can generate small unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. One way to avoid
ground loops is to use the scheme where a 'star connection' is used for the AGND; in
this way the ground current or reference currents do not flow through any common input
leads, eliminating any error voltages.



Analog-To-Digital Converter MSP430 Family

15-14

15

SVCC

AVCC

RTOP (internal)

A/D

DVCC
RBOT(internal)

AGND

DGND

An

Tantalum

Vin

22uF

 VREF
-

+

 VIN
-

+

Ceramic

0.1uF

Tantalum

22uF

Ceramic

0.1uF

Figure 15.8: A/D Grounding and Noise Considerations

The digital ground DGND and analog ground AGND can also be star connected
together, but if separate supplies are used then two reverse biased diodes limit the
voltage difference to less than ±700mV.

Furthermore ripple and noise spikes on the power supply lines due to digital switching or
switching power supplies are especially troublesome.

Normally the internal noise is very small and the total input referred noise is far less than
one LSB, so the output code is fairly stable. However, as noise couples into the device
via the supply and ground changes, the noise margin reduces and code uncertainty and
jitter can creep in, which may mean taking several readings to average out the noise
effects. Another consequence is that, as the reference voltage SVCC or VREF is
reduced, the absolute value of the LSB also reduces, and therefore the noise becomes
even more dominant as the noise margin reduces. Thus a clean, totally noise-free setup
becomes of even more paramount importance to achieve the accuracy desired.

Adding carefully placed bypass capacitors returned to the respective ground planes
helps in stabilizing the supply current and minimizing the 'noise' .



MSP430 Family Analog-To-Digital Converter

15-15

15

15.2.7 A/D Converter Input and Output Pins

Input Pins

There are two different types of input signals; the inputs of analog signals A0, A1, A2,
A3, A4, A5, A6, A7 and REXT, SVCC.

The input signals coming from channel A0 to A7 can be treated as analog signals that
should be handled with the A/D converter, or as digital inputs to be read into the
processing unit.

An external resistor between REXT and SVCC determines the amount of current flowing
through an activated current source operation. The pin SVCC is then used as an output
or input. The SVCC pin is an input when the internal SVCC switch is off and the Vref is
applied externally. It is an output when the internal SVCC switch is on.

Output Pins

There are two different types of output signals, the outputs A0, A1, A2, A3 and the
SVCC.
Current will flow out of one of the analog pins A0, A1, A2, A3  if the current source
function is selected. The SVCC pin will then have a voltage just below the AVCC when
the SVCC switch is on.

Supply Pins

There are four supply pins to split the digital and the analog current paths:

AVCC,DVCC,AGND,DGND.

Some of the MSP430 family members will have all four supply pins bonded out for high
analog resolution, while others will have analog and digital VCC and/or GND rails
internally connected.

15.3 ADC Control Registers

Four control registers are implemented:

Register short form Register type Address Initial state

• Input register: AIN Type of read only 0110h - - -
• Input enable register: AEN Type of read/write 0112h reset
• ADC control register: ACTL Type of read/write 0114h →see figure
• Reserved 0116h
• ADC data register: ADAT Type of read 0118h - - -

All registers may be accessed by any instruction subject to register read/write
restrictions.



Analog-To-Digital Converter MSP430 Family

15-16

15

Input register AIN

The signals at the pins A0 to A7 can be signals from an analog source or a digital
source. The value of digital sources can be read with access to the input register. The
reading of the digital sources is enabled by a selection done in the input enable register.

MDB.7

MDB.6

MDB.5

MDB.4

MDB.3

MDB.2

MDB.1

MDB.0

From/To ADC

MDB.8 to MDB.15

AIN
register

MDB

16

AEN reg.

AEN.0

AEN.1

AEN.2

AEN.3

AEN.4

AEN.5

AEN.6

AEN.7

A0

A1

A2

A3

A4

A5

A6

A7

0

1

2

3

4

5

6

7

A0x

A1x

A2x

A3x

A4x

A5x

A6x

A7x

ACTL.2-5

Figure 15.9: ADC Input Register, Input Register Enable

The input register AIN is a read only register connected to the 16-bit MDB. The LowByte
of the register is implemented and MDB.0 to MDB.7 corresponds to A0 to A7. The
HighByte of the register is read as 00h.

.1 .0.2.3.4.5.6.7
AINAIN AIN AINAIN AIN AINAIN

A7x A6x A5x A4x A3x A2x A1x A0x

MDB.7 MDB.0
MDB.15 MDB.8

0 0000000

r0 r0 r0 r0 r0 r0 r0 r0 r r r r r r r r
110h

AIN

The signal at the corresponding input is logically gated with the appropriate enable
signal,   Ax .AND. AEN.x. Unselected (disabled) bits are read as '0'.



MSP430 Family Analog-To-Digital Converter

15-17

15

Input Enable Register AEN

The input enable register AEN is a read/write register connected to the 16-bit MDB. The
LowByte of the register is implemented and MDB.0 to MDB.7 corresponds to A0 to A7.
The HighByte of the register is read as 00h.

.1 .0.2.3.4.5.6.7
AENAEN AEN AENAEN AEN AENAEN

MDB.7 MDB.0
MDB.15 MDB.8

0 0000000

r0 r0 r0 r0 r0 r0 r0 r0 rw-0
112h

AEN

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

The input enable register bits control the definition of the individual bit:

AEN.x = 0 : Analog input. The bit read at an access to the AIN register
is 0.

AEN.x = 1 : Digital input. The bit read at an access to the AIN
represents the logical level at the appropriate pin.

The initial state of all bits is reset.

ADC Data Register ADAT

The ADC data register holds the result of the analog-to-digital conversion. The
conversion data are correct in the register at the end of a conversion and correct until
another conversion is started with setting SOC bit.

LSB

MDB.0MDB.15

MSB0000

r rrr0r0r0r0 r r r r r r r r r

ACTL.11 = 0

LSB

MDB.0MDB.15

MSBRA0RA100

r rrrrr0r0 r r r r r r r r r

ACTL.11 = 1

ADAT

0118h

ADAT

0118h



Analog-To-Digital Converter MSP430 Family

15-18

15

ADC Control Register ACTL

MDB.0MDB.15

rw-0rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 (w)r0rw-0rw-0rw-0rw-1rw-0rw-0r0

ACTL

0114h
CSVrefAD input selectCurrent sourceRange select0 PdADCLK

Bit 0, ACTL.0 : Convert Start

Bit 1, ACTL.1 : Source of Vref.
ACTL.1 = 0 : Switch SVCC is off. The output pin SVCC is not

connected to VCC. The reference voltage of the
ADC should be supplied from an external source.

ACTL.1 = 1 : Switch SVCC is on. The output pin SVCC is con-
nected to VCC. The reference voltage of the ADC
should not be supplied from an external source.

Bit 2-5, ACTL.2-.5 : AD input select.
These bits select the channel used for conversion. Channels
should be changed only after completion of a conversion.
Changing the channel while a conversion is active invalidates
the conversion in progress.

ACTL.5 ACTL.4 ACTL.3 ACTL.2 Channel

0 0 0 0 A0
0 0 0 1 A1
0 0 1 0 A2
0 0 1 1 A3
0 1 0 0 A4
0 1 0 1 A5
0 1 1 0 A6
0 1 1 1 A7
1 X X X NONE

Bit 6-8, ACTL.6-.8 : AD current source output select.
These bits select the channel used for output of the current
source. Channels should be changed only after completion of a
conversion. Changing the channel while a conversion is active
invalidates the conversion in progress.



MSP430 Family Analog-To-Digital Converter

15-19

15

ACTL.8 ACTL.7 ACTL.6 Channel

0 0 0 A0
0 0 1 A1
0 1 0 A2
0 1 1 A3
1 X X NONE

 Bit9-11, ACTL.9,.11: Range Select
These bits must not be changed once conversion has started.
Any manipulation of these bits during a conversion will result in
incorrect conversion data in ADAT.

ACTL.11 ACTL.10 ACTL.9 Range

0 0 0 A
0 0 1 B
0 1 0 C
0 1 1 D
1 X X Auto

Bit11, ACTL.11: Range Select Mode
ACTL.11 = 0 : The range select bits ACTL.9 and ACTL.10

have to be applied for manual range select.
ACTL.11 = 1 : The automatic range selection for a (12+2)-bit

conversion is active. Since the manual range
select is inactive the states of the range select
bits ACTL.9 and ACTL.10 are “don't care”.

Bit12, ACTL.12: Power Down (Pd)
ACTL.12 = 1: SVCC switch is off,

COMPARATOR is powered down
Current source is off

Bits 13, 14 ADCLK
The clock frequency of the ADC should be adjusted to the
maximum frequency described in the device’s data-sheet.

ACTL.14 ACTL.13 ADCLK

0 0 MCLK
0 1 MCLK/2
1 0 MCLK/3
1 1 MCLK/4

Bits 13-15 Reserved.



Analog-To-Digital Converter MSP430 Family

15-20

15

Test underflow and overflow condition by software

; Since the ADAT register is implemented in the 16-bit peripheral address space and
; integrated to handle data in word mode, no implementation of overflow or underflow
; error detection is mandatory. It is reduced to simple commands in program flow:

; Bit11 of the ACTL register is reset, a 12-bit conversion was active
;

CMP #0,&ADAT ; test for 12-bit ADC underflow
JEQ UndFlow ; Yes, continue with underflow handling

CMP #0FFFh,&ADAT ; test for 12-bit ADC overflow
;
; The MSBits, not implemented in the converter's hardware are read as 0s

JEQ OverFlow ; Yes, continue with overflow handling

; Bit11 of the ACTL register is set, a (12+2)-bit conversion was active
; The conversion range should be limited to Range A to C
;

CMP #0,&ADAT ; test for (12+2)-bit ADC underflow
JEQ UndFlow ; Yes, continue with underflow handling

CMP #2FFFh,&ADAT ; test only for Range A to C overflow
;
; The MSBits, not implemented in the converter's hardware are read as 0s

JHS OverFlow ; Yes, continue with overflow handling



MSP430 Family Miscellaneous Modules

16-1

16

16 Miscellaneous Modules

Topic Page

16.1 Crystal Oscillator 16-3

16.2 Power-on Circuitry 16-4

16.3 Crystal Buffer Output 16-5



Miscellaneous Modules MSP430 Family

16-2

16



MSP430 Family Miscellaneous Modules

16-3

16

16.1 Crystal Oscillator

All elements for crystal operation are integrated into the MSP430 - no additional external
components are necessary for operation. Since the oscillator is designed for ultra-low
power dissipation the PWB layout should provide short connections between the crystal
and the MSP430 device.

MSP430

32 768 Hz

XIN

XOUT

OscOff

~12pF

~12pF

ACLK

Figure 16.1: Crystal Oscillator schematic

When OscOff mode is selected the ACLK signal is held to high.



Miscellaneous Modules MSP430 Family

16-4

16

16.2 Power-on Circuitry

The power-on circuitry is part of the system reset scheme, and consists of two parts: the
power-on reset detection, and the power-on reset delay. The output of the POR delay is
fed into the POR latch and the PUC latch to set both latches, in order to supply the
system with the reset condition.

POR
detect

VCC POR delay

PUC

POR

PUC_FLL

VCC

RST/NMI
___

Resetwd2

Resetwd1

EQU *

WDTIFG *
WDTQn *
TIMSEL *

NMI *

...... * :  Bits or signals are part of the watchdog timer peripheral module

S

S

S
S
S
S

Delay

R

R

MCLK

POR

Latch

PUC

Latch

Figure 16.2: Power-on reset and Power-up clear schematic

When the VCC supply provides a fast VCC rise time, the POR delay gives enough
active time on the POR signal to allow it to initialize the circuit correctly after power-up.

VCC

POR

V

t

t
POR_Delay

Figure 16.3: Power-on reset timing on fast VCC rise time



MSP430 Family Miscellaneous Modules

16-5

16

When the VCC supply provides a 'slow' VCC rise condition the POR detect defines the
POR signal to allow it to initialize the circuit correctly after power-up.

VCC

POR

V

t

V
POR

V
min

Figure 16.4: Power-on reset timing on slow VCC rise time

The supply voltage VCC should fall below Vmin to ensure another POR signal occurs
with the next increase in supply voltage. If VCC does not fall below Vmin a POR will not
be generated and power-up conditions will not be set properly.

16.3 Crystal Buffer Output

The frequency of the buffer output is selected via the control register CBCTL.

Q0 Q1

CL

CBE

XBUF
XBUF

00

01

10

11

CBSEL0

CBSEL1

ACLK

MCLK

POR

ACLK

ACLK/2

ACLK/4

MCLK

Figure 16.5: Schematic of Crystal Buffer



Miscellaneous Modules MSP430 Family

16-6

16

The control register CBCTL of the clock buffer output peripheral has bits that control the
frequency applied to pin XBUF, and one bit that controls the 3-state condition of the
output buffer.

The divider runs with the minimum of logic necessary for correct operation. For example,
it is halted when ACLK or MCLK is selected or if the CBE bit is set.

The three bits in the control register CBSEL1, CBSEL0 and CBE are reset with POR
signal. The POR signal is active either during switching on VCC or when ,,  RST/NMI
-pin is tied to VSS when reset function is selected.

--- --- --- --- --- CBSEL CBSEL CBE1 0

w-(0) w-(0) w-(0)

CBCTL

053h

Bit 0: The bit CBE controls the 3-state condition of the output buffer.
CBE = 1: Output buffer enabled
CBE = 0: Output buffer disabled
During power-on reset (POR) the output buffer is always disabled. External
components are not supplied with the selected frequency.

Bit 1,2: The bits CBSEL1 and CBSEL0 select the frequency that can be put onto
output pin XBUF.

CBSEL1 CBSEL0 XBUF1
0 0 ACLK ←  State after POR
0 1 ACLK/2
1 0 ACLK/4
1 1 MCLK



MSP430 Family Peripheral File Map

A-1

A

A. Peripheral File Map

This appendix summarizes the Peripheral File (PF) and control bit information into a
single location for reference.

Each PF register is presented as a row of boxes containing the control or status bits
belonging to the register. The register symbol (e.g. P0IN) and the PF hex address are to
the left of each register.

The accessibility and/or hardware conditions of each bit are indicated below each bit
symbol, with the following definitions:

• rw: read/write
• r: read only
• r0: read as '0'
• r1: read as '1'
• w: write only
• w0: write a '0'
• w1: write a '1'
• (w): no register bit implemented; writing a '1' will result in a pulse

the register bit is always read as '0'
• h0: cleared by hardware
• h1: set by hardware
• -0,-1: condition after PUC signal active (Reset + WDT conditions).
• -(0),-(1): condition after POR signal active (Reset condition).



Peripheral File Map MSP430 Family

A-2

A

Special function register, byte access

Bit # - 7 6 5 4 3 2 1 0

000Fh

Module enable 2, ME2
0005h

UTXE
rw-0

URXE
rw-0

Module enable 1, ME1
0004h

Interrupt flag 2, IFG2
0003h

BTIFG
rw

ADIFG
rw-0

UTXIFG
rw-0

URXIFG
rw-0

Interrupt flag 1, IFG1
0002h

NMIIFG
rw-0

P0IFG.1
rw-0

P0IFG.0
rw-0

OFIFG
rw-1

WDTIFG
rw 1)

Interrupt enable 2,IE2
0001h

BTIE
rw-0

3)
rw-0

2)
rw-0

UTXIE
rw-0

URXIE
rw-0

Interrupt enable 1, IE1
0000h

P0IE.1
rw-0

P0IE.0
rw-0

OFIE
rw-0

WDTIE
rw-0

1) The WDTIFG is reset on POR signal and set with WDT overflow or
WDT password violation.

2) Configuration ‘320: ADIE for 12+2b ADC (type: rw-0)
Configuration ‘310: TPIE for Timer/Port Module (type: rw-0)

3) Configuration ‘320, ‘330: TPIE for Timer/Port Module (type: rw-0)



MSP430 Family Peripheral File Map

A-3

A

Digital I/O frame, byte access

Bit # - 7 6 5 4 3 2 1 0

Direction reg., P4SEL
001Fh

P4SEL.7
rw-0

P4SEL.6
rw-0

P4SEL.5
rw-0

P4SEL.4
rw-0

P4SEL.3
rw-0

P4SEL.2
rw-0

P4SEL.1
rw-0

P4SEL.0
rw-0

Direction reg., P4DIR
001Eh

P4DIR.7
rw-0

P4DIR.6
rw-0

P4DIR.5
rw-0

P4DIR.4
rw-0

P4DIR.3
rw-0

P4DIR.2
rw-0

P4DIR.1
rw-0

P4DIR.0
rw-0

Output reg., P4OUT
001Dh

P4OUT.7
rw

P4OUT.6
rw

P4OUT.5
rw

P4OUT.4
rw

P4OUT.3
rw

P4OUT.2
rw

P4OUT.1
rw

P4OUT.0
rw

Input register, P4IN
001Ch

P4IN.7
r

P4IN.6
r

P4IN.5
r

P4IN.4
r

P4IN.3
r

P4IN.2
r

P4IN.1
r

P4IN.0
r

Direction reg., P3SEL
001Bh

P3SEL.7
rw-0

P3SEL.6
rw-0

P3SEL.5
rw-0

P3SEL.4
rw-0

P3SEL.3
rw-0

P3SEL.2
rw-0

P3SEL.1
rw-0

P3SEL.0
rw-0

Direction reg., P3DIR
001Ah

P3DIR.7
rw-0

P3DIR.6
rw-0

P3DIR.5
rw-0

P3DIR.4
rw-0

P3DIR.3
rw-0

P3DIR.2
rw-0

P3DIR.1
rw-0

P3DIR.0
rw-0

Output reg., P3OUT
0019h

P3OUT.7
rw

P3OUT.6
rw

P3OUT.5
rw

P3OUT.4
rw

P3OUT.3
rw

P3OUT.2
rw

P3OUT.1
rw

P3OUT.0
rw

Input register, P3IN
0018h

P3IN.7
r

P3IN.6
r

P3IN.5
r

P3IN.4
r

P3IN.3
r

P3IN.2
r

P3IN.1
r

P3IN.0
r

0017h

0016h
Interrupt Enable, P0IE

0015h
P0IE.7

rw-0
P0IE.6

rw-0
P0IE.5

rw-0
P0IE.4

rw-0
P0IE.3

rw-0
P0IE.2

rw-0
*)

r0
*)

r0

Int. Edge Sel., P0IES
0014h

P0IES.7
rw

P0IES.6
rw

P0IES.5
rw

P0IES.4
rw

P0IES.3
rw

P0IES.2
rw

P0IES.1
rw

P0IES.0
rw

Interrupt Flags, P0IFG
0013h

P0IFG.7
rw-0

P0IFG.6
rw-0

P0IFG.5
rw-0

P0IFG.4
rw-0

P0IFG.3
rw-0

P0IFG.2
rw-0

*)
r0

*)
r0

Direction reg., P0DIR
0012h

P0DIR.7
rw-0

P0DIR.6
rw-0

P0DIR.5
rw-0

P0DIR.4
rw-0

P0DIR.3
rw-0

P0DIR.2
rw-0

P0DIR.1
rw-0

P0DIR.0
rw-0

Output reg., P0OUT
0011h

P0OUT.7
rw

P0OUT.6
rw

P0OUT.5
rw

P0OUT.4
rw

P0OUT.3
rw

P0OUT.2
rw

P0OUT.1
rw

P0OUT.0
rw

Input register, P0IN
0010h

P0IN.7
r

P0IN.6
r

P0IN.5
r

P0IN.4
r

P0IN.3
r

P0IN.2
r

P0IN.1
r

P0IN.0
r

*) These interrupt enable bits and flags are included in the SFR
frame.



Peripheral File Map MSP430 Family

A-4

A

Digital I/O frame, byte access

Bit # - 7 6 5 4 3 2 1 0

002Fh
Direction reg., P2SEL

002Eh
P2SEL.7
rw-0

P2SEL.6
rw-0

P2SEL.5
rw-0

P2SEL.4
rw-0

P2SEL.3
rw-0

P2SEL.2
rw-0

P2SEL.1
rw-0

P2SEL.0
rw-0

Interrupt Enable, P2IE
002Dh

P0IE.7
rw-0

P2IE.6
rw-0

P2IE.5
rw-0

P2IE.4
rw-0

P2IE.3
rw-0

P2IE.2
rw-0

P2IE.1
rw-0

P2IE.0
rw-0

Int. Edge Sel., P2IES
002Ch

P2IES.7
rw

P2IES.6
rw

P2IES.5
rw

P2IES.4
rw

P2IES.3
rw

P2IES.2
rw

P2IES.1
rw

P2IES.0
rw

Interrupt Flags, P2IFG
002Bh

P2IFG.7
rw-0

P2IFG.6
rw-0

P2IFG.5
rw-0

P2IFG.4
rw-0

P2IFG.3
rw-0

P2IFG.2
rw-0

P2IFG.1
rw-0

P2IFG.0
rw-0

Direction reg., P2DIR
002Ah

P2DIR.7
rw-0

P2DIR.6
rw-0

P2DIR.5
rw-0

P2DIR.4
rw-0

P2DIR.3
rw-0

P2DIR.2
rw-0

P2DIR.1
rw-0

P2DIR.0
rw-0

Output reg., P2OUT
0029h

P2OUT.7
rw

P2OUT.6
rw

P2OUT.5
rw

P2OUT.4
rw

P2OUT.3
rw

P2OUT.2
rw

P2OUT.1
rw

P2OUT.0
rw

Input register, P2IN
0028h

P2IN.7
r

P2IN.6
r

P2IN.5
r

P2IN.4
r

P2IN.3
r

P2IN.2
r

P2IN.1
r

P2IN.0
r

0027h
Direction reg., P1SEL

0026h
P1SEL.7
rw-0

P1SEL.6
rw-0

P1SEL.5
rw-0

P1SEL.4
rw-0

P1SEL.3
rw-0

P1SEL.2
rw-0

P1SEL.1
rw-0

P1SEL.0
rw-0

Interrupt Enable, P1IE
0025h

P0IE.7
rw-0

P1IE.6
rw-0

P1IE.5
rw-0

P1IE.4
rw-0

P1IE.3
rw-0

P1IE.2
rw-0

P1IE.1
rw-0

P1IE.0
rw-0

Int. Edge Sel., P1IES
0024h

P1IES.7
rw

P1IES.6
rw

P1IES.5
rw

P1IES.4
rw

P1IES.3
rw

P1IES.2
rw

P1IES.1
rw

P1IES.0
rw

Interrupt Flags, P1IFG
0023h

P1IFG.7
rw-0

P1IFG.6
rw-0

P1IFG.5
rw-0

P1IFG.4
rw-0

P1IFG.3
rw-0

P1IFG.2
rw-0

P1IFG.1
rw-0

P1IFG.0
rw-0

Direction reg., P1DIR
0022h

P1DIR.7
rw-0

P1DIR.6
rw-0

P1DIR.5
rw-0

P1DIR.4
rw-0

P1DIR.3
rw-0

P1DIR.2
rw-0

P1DIR.1
rw-0

P1DIR.0
rw-0

Output reg., P1OUT
0021h

P1OUT.7
rw

P1OUT.6
rw

P1OUT.5
rw

P1OUT.4
rw

P1OUT.3
rw

P1OUT.2
rw

P1OUT.1
rw

P1OUT.0
rw

Input register, P1IN
0020h

P1IN.7
r

P1IN.6
r

P1IN.5
r

P1IN.4
r

P1IN.3
r

P1IN.2
r

P1IN.1
r

P1IN.0
r



MSP430 Family Peripheral File Map

A-5

A

LCD register frame, byte access

Bit # - 7 6 5 4 3 2 1 0
LCD Memory 15

003Fh
S29C3

rw
S29C2

rw
S29C1

rw
S29C0

rw
S28C3

rw
S28C2

rw
S28C1

rw
S28C0

rw
LCD Memory 14

003Eh
S27C3

rw
S27C2

rw
S27C1

rw
S27C0

rw
S26C3

rw
S26C2

rw
S26C1

rw
S26C0

rw
LCD Memory 13

003Dh
S25C3

rw
S25C2

rw
S25C1

rw
S25C0

rw
S24C3

rw
S24C2

rw
S24C1

rw
S24C0

rw
LCD Memory 12

003Ch
S23C3

rw
S23C2

rw
S23C1

rw
S23C0

rw
S22C3

rw
S22C2

rw
S22C1

rw
S22C0

rw
LCD Memory 11

003Bh
S21C3

rw
S21C2

rw
S21C1

rw
S21C0

rw
S20C3

rw
S20C2

rw
S20C1

rw
S20C0

rw
LCD Memory 10

003Ah
S19C3

rw
S19C2

rw
S19C1

rw
S19C0

rw
S18C3

rw
S18C2

rw
S18C1

rw
S18C0

rw
LCD Memory 9

0039h
S17C3

rw
S17C2

rw
S17C1

rw
S17C0

rw
S16C3

rw
S16C2

rw
S16C1

rw
S16C0

rw
LCD Memory 8

0038h
S15C3

rw
S15C2

rw
S15C1

rw
S15C0

rw
S14C3

rw
S14C2

rw
S14C1

rw
S14C0

rw
LCD Memory 7

0037h
S13C3

rw
S13C2

rw
S13C1

rw
S13C0

rw
S12C3

rw
S12C2

rw
S12C1

rw
S12C0

rw
LCD Memory 6

0036h
S11C3

rw
S11C2

rw
S11C1

rw
S11C0

rw
S10C3

rw
S10C2

rw
S10C1

rw
S10C0

rw
LCD Memory 5

0035h
S9C3

rw
S9C2

rw
S9C1

rw
S9C0

rw
S8C3

rw
S8C2

rw
S8C1

rw
S8C0

rw
LCD Memory 4

0034h
S7C3

rw
S7C2

rw
S7C1

rw
S7C0

rw
S6C3

rw
S6C2

rw
S6C1

rw
S6C0

rw
LCD Memory 3

0033h
S5C3

rw
S5C2

rw
S5C1

rw
S5C0

rw
S4C3

rw
S4C2

rw
S4C1

rw
S4C0

rw
LCD Memory 2

0032h
S3C3

rw
S3C2

rw
S3C1

rw
S3C0

rw
S2C3

rw
S2C2

rw
S2C1

rw
S2C0

rw
LCD Memory 1

0031h
S1C3

rw
S1C2

rw
S1C1

rw
S1C0

rw
S0C3

rw
S0C2

rw
S0C1

rw
S0C0

rw
LCD Cntl&Mode, LCDC

0030h
LCDM7

rw-0
LCDM6

rw-0
LCDM5

rw-0
LCDM4

rw-0
LCDM3

rw-0
LCDM2

rw-0
LCDM1

rw-0
LCDM0

rw-0

Note: The LCD Memory bits are named with the MSP430 convention. The first part
of the bit name indicates the corresponding segment line and the second
indicates the corresponding common line.
Example for a segment using S4 and Com3: S4C3.



Peripheral File Map MSP430 Family

A-6

A

8bit Timer/Counter frame, Basic Timer frame, Timer/Port frame, byte access

Bit # - 7 6 5 4 3 2 1 0
Timer/Port Enable reg.,

TPE
04Fh

TPSSEL3

rw-0

TPSSEL2

rw-0

TPE.5

rw-0

TPE.4

rw-0

TPE.3

rw-0

TPE.2

rw-0

TPE.1

rw-0

TPE.0

rw-0
Timer/Port Data reg.,

TPD
04Eh

B16

rw-0

CPON

rw-0

TPD.5

rw-0

TPD.4

rw-0

TPD.3

rw-0

TPD.2

rw-0

TPD.1

rw-0

TPD.0

rw-0
Timer/Port Counter1,

TPCNT2
04Dh

27

rw

26

rw

25

rw

24

rw

23

rw

22

rw

21

rw

20

rw
Timer/Port Counter1,

TPCNT1
04Ch

27

rw

26

rw

25

rw

24

rw

23

rw

22

rw

21

rw

20

rw
Timer/Port control reg.,

TPCTL
04Bh

TPSSEL1

rw-0

TPSSEL0

rw-0

ENB

rw-0

ENA

rw-0

EN1

r-0

RC2FG

rw-0

RC1FG

rw-0

EN1FG

rw-0

Counter Data, 8bit
Basic Timer, BTCNT2

0047h
27

rw

26

rw

25

rw

24

rw

23

rw

22

rw

21

rw

20

rw
Counter Data, 8bit

Basic Timer, BTCNT1
0046h

27

rw

26

rw

25

rw

24

rw

23

rw

22

rw

21

rw

20

rw

045h

Counter Data, 8bit
Timer/Counter, TCDAT

0044h

TCDAT.7

rw

TCDAT.6

rw

TCDAT.5

rw

TCDAT.4

rw

TCDAT.3

rw

TCDAT.2

rw

TCDAT.1

rw

TCDAT.0

rw
Pre-load Register, 8bit
Timer/Counter, TCPLD

0043h

TCPLD.7

rw

TCPLD.6

rw

TCPLD.5

rw

TCPLD.4

rw

TCPLD.3

rw

TCPLD.2

rw

TCPLD.1

rw

TCPLD.0

rw
Control Register, 8bit

Timer/Counter, TCCTL
0042h

SSEL1

rw-0

SSEL0

rw-0

ISCTL

rw-0

TXEN

rw-0

ENCNT

rw-0

RXACT

rw-0

TXD

rw-0

RXD

r(-1)

0041h
Basic Timer, BTCTL

0040h
SSEL

rw
Reset *
Hold **

rw

DIV
rw

FRFQ1
rw

FRFQ0
rw

IP2
rw

IP1
rw

IP0
rw



MSP430 Family Peripheral File Map

A-7

A

PWM Timer, EPROM control register and System Clock Generator frame, byte
access

Bit # - 7 6 5 4 3 2 1 0
PWM timer counter

PWMCNT.2
005Fh

27

rw-0

26

rw-0

25

rw-0

24

rw-0

23

rw-0

22

rw-0

21

rw-0

20

rw-0
PWM duty register

PWMDTR.2
005Eh

27

rw-1

26

rw-1

25

rw-1

24

rw-1

23

rw-1

22

rw-1

21

rw-1

20

rw-1
PWM duty buffer

PWMDTB.2
005Dh

27

rw-0

26

rw-0

25

rw-0

24

rw-0

23

rw-0

22

rw-0

21

rw-0

20

rw-0
PWM timer control

register PWMCTL.2
005Ch

----

rw-0

SSEL2

rw-0

SSEL1

rw-0

SSEL0

rw-0

CMPM

r

----

rw-0

OS

rw-0

OE

rw-0
PWM timer counter

PWMCNT.1
005Bh

27

rw-0

26

rw-0

25

rw-0

24

rw-0

23

rw-0

22

rw-0

21

rw-0

20

rw-0
PWM duty register

PWMDTR.1
005Ah

27

rw-1

26

rw-1

25

rw-1

24

rw-1

23

rw-1

22

rw-1

21

rw-1

20

rw-1
PWM duty buffer

PWMDTB.1
0059h

27

rw-0

26

rw-0

25

rw-0

24

rw-0

23

rw-0

22

rw-0

21

rw-0

20

rw-0
PWM timer control

register PWMCTL.1
0058h

----

rw-0

SSEL2

rw-0

SSEL1

rw-0

SSEL0

rw-0

CMPM

r

----

rw-0

OS

rw-0

OE

rw-0

EPROM control register
EPCTL
0054h r-0 r-0 r-0 r-0 r-0 r-0

VPPS

rw-0

EXE

rw-0
Crystal Buffer ctl. reg.,

CBCTL *)

053h

CBSEL1

w-(0)

CBSEL0

w-(0)

CBE

w-(0)
System Clock Gen.,

Freq. Cntl.  SCFQCTL
0052h

M

rw-0

26

rw-0

25

rw-0

24

rw-1

23

rw-1

22

rw-1

21

rw-1

20

rw-1
System Clock Gen.,

Freq. Integrator SCFI1
0051h

29

rw-0

28

rw-0

27

rw-0

26

rw-0

25

rw-0

24

rw-0

23

rw-0

22

rw-0
System Clock Gen.,

Freq. Integrator SCFI0
0050h

0

r

0

r

0

r

FN_4

rw-0

FN_3

rw-0

FN_2

rw-0

21

rw-0

20

rw-0

*) CBSel1, CBSEL0 and CBE bit are reset with POR signal.



Peripheral File Map MSP430 Family

A-8

A

USART frame, UART Mode selected: SYNC bit = 0, byte access

Bit # - 7 6 5 4 3 2 1 0

07Fh

Transmit Buffer TXBUF

077h
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw
Receive Buffer RXBUF

076h
27

r
26

r
25

r
24

r
23

r
22

r
21

r
20

r
Baud Rate UBR1

075h
215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw
Baud Rate UBR0

074h
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw
Modulation Control

UMCTL 073h
m7

rw
m6

rw
m5

rw
m4

rw
m3

rw
m2

rw
m1

rw
m0

rw
Receive Control URCTL

072h
FE

rw-0
PE

rw-0
OE

rw-0
BRK

rw-0
URXEIE

rw-0
URXWIE

rw-0
RXWake

rw-0
RXERR

rw-0
Transmit Control UTCTL

071h
unused

rw-0
CKPL

rw-0
SSEL1

rw-0
SSEL0

rw-0
URXSE

rw-0
TXWAKE

rw-0
unused

rw-0
TXEPT

rw-1
USART Control UCTL

070h
PENA

rw-0
PEV

rw-0
SP

rw-0
CHAR

rw-0
Listen

rw-0
SYNC

rw-0
MM

rw-0
SWRST

rw-1

USART frame, SPI Mode selected: SYNC bit = 1, byte access

Bit # - 7 6 5 4 3 2 1 0

07Fh

Transmit Buffer TXBUF

077h
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw
Receive Buffer RXBUF

076h
27

r
26

r
25

r
24

r
23

r
22

r
21

r
20

r
Baud Rate UBR1

075h
215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw
Baud Rate UBR0

074h
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw
Modulation Control

UMCTL 073h
m7

rw
m6

rw
m5

rw
m4

rw
m3

rw
m2

rw
m1

rw
m0

rw
Receive Control URCTL

072h
FE

rw-0
undef.

rw-0
OE

rw-0
undef.

rw-0
unused

rw-0
unused

rw-0
undef.

rw-0
undef.

rw-0
Transmit Control UTCTL

071h
CKPH

rw-0
CKPL

rw-0
SSEL1

rw-0
SSEL0

rw-0
unused

rw-0
unused

rw-0
STC

rw-0
TXEPT

rw-1
USART Control UCTL

070h
unused

rw-0
unused

rw-0
unused

rw-0
CHAR

rw-0
Listen

rw-0
SYNC

rw-0
MM

rw-0
SWRST

rw-1



MSP430 Family Peripheral File Map

A-9

A

A/D converter register frame, word access

Bit # - 15 14 13 12 11 10 9 8

11Fh

AD Converter,
Data Register ADAT

118h
r0 r0

R1 *)

r0

R0 *)

r0

211

r

210

r

29

r

28

r
reserved

116h
AD Converter,

Control Register ACTL
114h

ACTL.15

r0

ACTL.14

r0

ACTL.13

r0

ACTL.12

rw-1

ACTL.11

rw-0

ACTL.10

rw-0

ACTL.9

rw-0

ACTL.8

rw-0
AD Converter,

Input Enable Reg. AEN
112h

r0 r0 r0 r0 r0 r0 r0 r0
AD Converter,

Input Data Reg. AIN
110h

r0 r0 r0 r0 r0 r0 r0 r0
*) The bits ADAT.12 and ADAT.13 are read as 0 when ACTL.11=0 otherwise signals R0 and R1 are read.

Bit # - 7 6 5 4 3 2 1 0

11Eh

AD Converter,
Data Register ADAT

118h
27

r

26

r

25

r

24

r

23

r

22

r

21

r

20

r
reserved

116h
AD Converter,

Control Register ACTL
114h

ACTL.7

rw-0

ACTL.6

rw-0

ACTL.5

rw-0

ACTL.4

rw-0

ACTL.3

rw-0

ACTL.2

rw-0

ACTL.1

rw-0

ACTL.0

(w)r0
AD Converter,

Input Enable Reg. AEN
112h

AEN.7

rw-0

AEN.6

rw-0

AEN.5

rw-0

AEN.4

rw-0

AEN.3

rw-0

AEN.2

rw-0

AEN.1

rw-0

AEN.0

rw-0
AD Converter,

Input Data Reg. AIN
110h

AIN.7

r

AIN.6

r

AIN.5

r

AIN.4

r

AIN.3

r

AIN.2

r

AIN.1

r

AIN.0

r



Peripheral File Map MSP430 Family

A-10

A

Watchdog/Timer register and Timer_A interrupt Vector register frame, word
access

Bit # - 15 14 13 12 11 10 9 8
Timer_A Interrupt Vector

TAIV 12Eh
0

r0
0

r0
0

r0
0

r0
0

r0
0

r0
0

r0
0

r0

Watchdog Timer,
Control Reg. WDTCTL

120h

w0

r0

w1

r1

w0

r1

w1

r0

w1

r1

w0

r0

w1

r0

w0

r1

Bit # - 7 6 5 4 3 2 1 0
Timer_A Interrupt Vector

TAIV 12Eh
0

r0
0

r0
0

r0
TAIV

r-(0)
0

r-(0)
0

r-(0)
0

r-(0)
0

r0

Watchdog Timer,
Control Reg. WDTCTL

120h

HOLD

rw-0

NMIES

rw-0

NMI

rw-0

TMSEL

rw-0

CNTCL

(w),r0

SSEL

rw-0

IS1

rw-0

IS0

rw-0



MSP430 Family Peripheral File Map

A-11

A

Multiplier register frame, word access

Bit # - 15 14 13 12 11 10 9 8
Sum Extend, SumExt

013Eh
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
Result High Word ResHi

013Ch
215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw
Result Low Word ResLo

013Ah
215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw

Second Operand OP2
0138h

215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw

0136h

MPY+ACC MAC
0134h

215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw

Multiply signed MPYS
0132h

215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw

Multiply unsigned MPY
0130h

215

rw
214

rw
213

rw
212

rw
211

rw
210

rw
29

rw
28

rw

Bit # - 7 6 5 4 3 2 1 0
Sum Extend, SumExt

013Eh
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
*)

r
Result High Word ResHi

013Ch
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw
Result Low Word ResLo

013Ah
27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw

Second Operand OP2
0138h

27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw

0136h

MPY+ACC MAC
0134h

27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw

Multiply signed MPYS
0132h

27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw

Multiply unsigned MPY
0130h

27

rw
26

rw
25

rw
24

rw
23

rw
22

rw
21

rw
20

rw

*) The SUM Extend register SumExt holds the sign of the result of a 16x16-bit
multiplication (MPYS) or it holds the overflow of the multiply and accumulate (MAC)
operation.
The SumExt register is:
-  0FFFFh when a MPYS operation ends in a negative result
-  0h when a MPYS operation ends in a negative result
-  0h when a MAC operation has no overflow
-  1h when a MAC operation has an overflow



Peripheral File Map MSP430 Family

A-12

A

Timer_A register frame (I), word access

Bit # - 15 14 13 12 11 10 9 8

017Eh

017Ch

Cap/Com register CCR4
017Ah

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

Cap/Com register CCR3
0178h

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

Cap/Com register CCR2
0176h

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

Cap/Com register CCR1
0174h

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

Cap/Com register CCR0
0172h

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

Timer_A register TAR
0170h

215

rw-(0)
214

rw-(0)
213

rw-(0)
212

rw-(0)
211

rw-(0)
210

rw-(0)
29

rw-(0)
28

rw-(0)

016Eh

016Ch
Cap/Com Control

CCTL4, 0164h
CM41

rw-(0)
CM40

rw-(0)
CCIS41

rw-(0)
CCIS40

rw-(0)
SCS4

rw-(0)
SCCI4

rw-(0)
unused

r0
CAP4

rw-(0)
Cap/Com Control

CCTL3, 0164h
CM31

rw-(0)
CM30

rw-(0)
CCIS31

rw-(0)
CCIS30

rw-(0)
SCS3

rw-(0)
SCCI3

rw-(0)
unused

r0
CAP3

rw-(0)
Cap/Com Control

CCTL2, 0164h
CM21

rw-(0)
CM20

rw-(0)
CCIS21

rw-(0)
CCIS20

rw-(0)
SCS2

rw-(0)
SCCI2

rw-(0)
unused

r0
CAP2

rw-(0)
Cap/Com Control

CCTL1, 0164h
CM11

rw-(0)
CM10

rw-(0)
CCIS11

rw-(0)
CCIS10

rw-(0)
SCS1

rw-(0)
SCCI1

rw-(0)
unused

r0
CAP1

rw-(0)
Cap/Com Control

CCTL0, 0162h
CM01

rw-(0)
CM00

rw-(0)
CCIS01

rw-(0)
CCIS00

rw-(0)
SCS0

rw-(0)
SCCI0

rw-(0)
unused

r0
CAP0

rw-(0)
Timer_A Control TACTL

0160h
unused

rw-(0)
unused

rw-(0)
unused

rw-(0)
unused

rw-(0)
unused

rw-(0)
SSEL2

rw-(0)
SSEL1

rw-(0)
SSEL0

rw-(0)



MSP430 Family Peripheral File Map

A-13

A

Timer_A register frame (II), word access

Bit # - 7 6 5 4 3 2 1 0

017Eh

017Ch

Cap/Com register CCR4
017Ah

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/Com register CCR3
0178h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/Com register CCR2
0176h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/Com register CCR1
0174h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Cap/Com register CCR0
0172h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

Timer_A register TAR
0170h

27

rw-(0)
26

rw-(0)
25

rw-(0)
24

rw-(0)
23

rw-(0)
22

rw-(0)
21

rw-(0)
20

rw-(0)

016Eh

016Ch
Cap/Com Control

CCTL4, 016Ah
OutMod42
rw-(0)

OutMod41
rw-(0)

OutMod40
rw-(0)

CCIE4
rw-(0)

CCI4
r

OUT4
rw-(0)

COV4
rw-(0)

CCIFG4
rw-(0)

Cap/Com Control
CCTL3, 0168h

OutMod32
rw-(0)

OutMod31
rw-(0)

OutMod30
rw-(0)

CCIE3
rw-(0)

CCI3
r

OUT3
rw-(0)

COV3
rw-(0)

CCIFG3
rw-(0)

Cap/Com Control
CCTL2, 0166h

OutMod22
rw-(0)

OutMod21
rw-(0)

OutMod20
rw-(0)

CCIE2
rw-(0)

CCI2
r

OUT2
rw-(0)

COV2
rw-(0)

CCIFG2
rw-(0)

Cap/Com Control
CCTL1, 0164h

OutMod12
rw-(0)

OutMod11
rw-(0)

OutMod10
rw-(0)

CCIE1
rw-(0)

CCI1
r

OUT1
rw-(0)

COV1
rw-(0)

CCIFG1
rw-(0)

Cap/Com Control
CCTL0, 0162h

OutMod02
rw-(0)

OutMod01
rw-(0)

OutMod00
rw-(0)

CCIE0
rw-(0)

CCI0
r

OUT0
rw-(0)

COV0
rw-(0)

CCIFG0
rw-(0)

Timer_A Control TACTL
0160h

ID1
rw-(0)

ID0
rw-(0)

MC1
rw-(0)

MC0
rw-(0)

unused
rw-(0)

CLR
rw-(0)

TAIE
rw-(0)

TAIFG
rw-(0)



Peripheral File Map MSP430 Family

A-14

A



MSP430 Family Instruction Set

B-1

B

B. Instruction Set Desciption

The MSP430 Core CPU architecture evolved from the idea of using a reduced
instruction set with highly transparent instruction formats. There are core instructions
that are implemented into hardware, and emulated instructions that use the hardware
construction and emulate instructions with high efficiency. The emulated instructions use
core instructions with the additional built-in constant generators CG1 and CG2. Both the
core instructions and the emulated instructions are described in this section. The
mnemonics of the emulated instructions are used with the examples.

The words in program memory used by an instruction vary from 1 to 3 words, depending
on the combination of addressing modes.
Each instruction uses a minimum of one word (two bytes) in the program memory. The
indexed, symbolic, absolute and immediate modes need one additional word in the
program memory. These four modes are available for the source operand. The indexed,
symbolic and absolute mode can be used for the destination operand.
The instruction combination for source and destination consumes one to three words of
code memory.



Instruction Set MSP430 Family

B-2

B



MSP430 Family Instruction Set

B-3

B

Instruction Set Overview
Status Bits

V N Z C
* ADC[.W];ADC.B dst dst + C -> dst * * * *

ADD[.W];ADD.B src,dst src + dst -> dst * * * *
ADDC[.W];ADDC.B src,dst src + dst + C -> dst * * * *
AND[.W];AND.B src,dst src .and. dst -> dst 0 * * *
BIC[.W];BIC.B src,dst .not.src .and. dst -> dst - - - -
BIS[.W];BIS.B src,dst src .or. dst -> dst - - - -
BIT[.W];BIT.B src,dst src .and. dst 0 * * *

* BR dst Branch to ....... - - - -
CALL dst PC+2 -> stack, dst -> PC - - - -

* CLR[.W];CLR.B dst Clear destination - - - -
* CLRC Clear carry bit - - - 0
* CLRN Clear negative bit - 0 - -
* CLRZ Clear zero bit - - 0 -

CMP[.W];CMP.B src,dst dst - src * * * *
* DADC[.W];DADC.B dst dst + C -> dst (decimal) * * * *

DADD[.W];DADD.B src,dst src + dst + C -> dst (decimal) * * * *
* DEC[.W];DEC.B dst dst - 1 -> dst * * * *
* DECD[.W];DECD.B dst dst - 2 -> dst * * * *
* DINT Disable interrupt - - - -
* EINT Enable interrupt - - - -
* INC[.W];INC.B dst Increment destination,

 dst +1 -> dst * * * *
* INCD[.W];INCD.B dst Double-Increment destination,

dst+2->dst * * * *
* INV[.W];INV.B dst Invert destination * * * *

JC/JHS Label Jump to Label if Carry-bit is set - - - -
JEQ/JZ Label Jump to Label if Zero-bit is set - - - -
JGE Label Jump to Label if (N .XOR. V) = 0 - - - -
JL Label Jump to Label if (N .XOR. V) = 1 - - - -
JMP Label Jump to Label unconditionally - - - -
JN Label Jump to Label if Negative-bit is

set - - - -
JNC/JLO Label Jump to Label if Carry-bit is reset - - - -
JNE/JNZ Label Jump to Label if Zero-bit is reset - - - -

Note: Marked instructions are emulated instructions

All marked instructions (*) are emulated instructions. The emulated instructions
use core instructions combined with the architecture and implementation of the
CPU, for higher code efficiency and faster execution.



Instruction Set MSP430 Family

B-4

B

Status Bits

V N Z C
MOV[.W];MOV.B src,dst src -> dst - - - -

* NOP No operation - - - -
* POP[.W];POP.B dst Item from stack, SP+2 → SP - - - -

PUSH[.W];PUSH.B src SP - 2 → SP, src → @SP - - - -
RETI Return from interrupt * * * *

TOS → SR, SP + 2 → SP
TOS → PC, SP + 2 → SZP

* RET Return from subroutine - - - -
TOS → PC, SP + 2 → SP

* RLA[.W];RLA.B dst Rotate left arithmetically * * * *
* RLC[.W];RLC.B dst Rotate left through carry * * * *

RRA[.W];RRA.B dst MSB → MSB → ....LSB → C 0 * * *
RRC[.W];RRC.B dst C → MSB → .........LSB → C * * * *

* SBC[.W];SBC.B dst Subtract carry from destination * * * *
* SETC Set carry bit - - - 1
* SETN Set negative bit - 1 - -
* SETZ Set zero bit - - 1 -

SUB[.W];SUB.B src,dst dst + .not.src + 1 → dst * * * *
SUBC[.W];SUBC.B src,dst dst + .not.src + C → dst * * * *
SWPB dst swap bytes - - - -
SXT dst Bit7 → Bit8 ........ Bit15 0 * * *

* TST[.W];TST.B dst Test destination 0 * * 1
XOR[.W];XOR.B src,dst src .xor. dst → dst * * * *

Note: Marked instructions

All marked instructions (*) are emulated instructions. The emulated instructions
use core instructions combined with the architecture and implementation of the
CPU, for higher code efficiency and faster execution.



MSP430 Family Instruction Set

B-5

B

Instruction Formats

Double operand instructions (core instructions)

The instruction format using double operands consists of four main fields, in total a 16bit
code:

• operational code field, 4bit [OP-Code]
• source field, 6bit [source register + As]
• byte operation identifier, 1bit [BW]
• destination field, 5bit [dest. register + Ad]

The source field is composed of two addressing bits and the  4bit register number
(0....15); the destination field is composed of one addressing bit and the  4bit register
number (0....15). The byte identifier B/W indicates whether the instruction is executed as
a byte (B/W=1) or as a word instruction (B/W=0)

 15 12  11 8   7         6   5    4 3 0

OP - Code source register Ad B/W As dest. register

operational code field

Status Bits

V N Z C
ADD[.W]; ADD.B src,dst src + dst -> dst * * * *
ADDC[.W]; ADDC.B src,dst src + dst + C -> dst * * * *
AND[.W]; AND.B src,dst src .and. dst -> dst 0 * * *
BIC[.W]; BIC.B src,dst .not.src .and. dst -> dst - - - -
BIS[.W]; BIS.B src,dst src .or. dst -> dst - - - -
BIT[.W]; BIT.B src,dst src .and. dst 0 * * *
CMP[.W]; CMP.B src,dst dst - src * * * *
DADD[.W]; DADD.B src,dst src + dst + C -> dst (dec) * * * *
MOV[.W]; MOV.B src,dst src -> dst - - - -
SUB[.W]; SUB.B src,dst dst + .not.src + 1 -> dst * * * *
SUBC[.W]; SUBC.B src,dst dst + .not.src + C -> dst * * * *
XOR[.W]; XOR.B src,dst src .xor. dst -> dst * * * *

Note: Operations using Status Register SR for destination

All operations using Status Register SR for destination overwrite the contents of
SR with the result of that operation: the status bits are not affected as described in
that operation.

Example:  ADD #3,SR     ; Operation: (SR) + 3 --> SR



Instruction Set MSP430 Family

B-6

B

Single operand instructions  (core instructions)

The instruction format using a single operand consists of two main fields, in total 16bit:
• operational code field, 9bit with 4MSB equal '1h'
• byte operation identifier, 1bit [BW]
• destination field, 6bit [destination register + Ad]

The destination field is composed of two addressing bits and the 4bit register number
(0....15). The bit position of the destination field is located in the same position as the
two operand instructions. The byte identifier B/W indicates whether the instruction is
executed as a byte (B/W=1) or as a word instruction (B/W=0)

 15                         12   11      10    9                 7 6  5          4  3                          0

0      0      0       1 X       X X       X       X B/W Ad destination register

operational code field destination field

Status Bits

V N Z C

RRA[.W]; RRA.B dst MSB → MSB → ...LSB → C 0 * * *
RRC[.W]; RRC.B dst C → MSB → ........LSB → C * * * *
PUSH[.W]; PUSH.B dst SP - 2 → SP, src → @SP - - - -
SWPB dst swap bytes - - - -
CALL dst PC+2 → @SP, dst → PC - - - -
RETI TOS → SR, SP + 2 → SP

TOS → PC, SP + 2 → SP
* * * *

SXT dst Bit7 -> Bit8 ........ Bit15 0 * * *



MSP430 Family Instruction Set

B-7

B

Conditional and unconditional Jumps (core instructions)

The instruction format for (un-)conditional jumps consists of two main fields, in total 16bit
:
• operational code (OP-Code) field, 6bit
• jump offset field, 10bit

The operational code field is composed of OP-Code (3bits), and 3 bits according to the
following conditions.

 15              13  12               10  9                                                                                     0

0       0       1 X      X      X X     X      X      X     X     X      X      X     X      X

OP-Code Jump-on .Code Sign Offset

operational code field Jump offset field

The conditional jumps allow jumps to addresses in the range -511 to +512 words relative
to the current address. The assembler computes the signed offsets and inserts them
into the opcode.

JC/JHS Label Jump to Label if Carry-bit is set

JEQ/JZ Label Jump to Label if Zero-bit is set

JGE Label Jump to Label if (N .XOR. V) = 0

JL Label Jump to Label if (N .XOR. V) = 1

JMP Label Jump to Label unconditionally

JN Label Jump to Label if Negative-bit is set

JNC/JLO Label Jump to Label if Carry-bit is reset

JNE/JNZ Label Jump to Label if Zero-bit is reset

Note: Conditional and unconditional Jumps

The conditional and unconditional Jumps do not effect the status bits.

A Jump which has been taken alters the PC with the offset:

PCnew=PCold + 2 + 2*offset.

A Jump which has not been taken continues the program with the ascending instruction.



Instruction Set MSP430 Family

B-8

B

Emulation of instructions without ROM penalty

The following instructions can be emulated with the reduced instruction set, without
additional ROM words. The assembler accepts the mnemonic of the emulated
instruction, and inserts the opcode of the suitable core instruction.

Note: Emulation of the following instructions

The emulation of the following instructions is possible using the contents of R2
and R3:
The register R2(CG1) contains the immediate values 2 and 4; the register
R3(CG2) contains -1 or 0FFFFh, 0, +1 and +2 depending on the addressing bits
As. The assembler sets the addressing bits according to the immediate value
used.



MSP430 Family Instruction Set

B-9

B

Short form of emulated instructions

Mnemonic Description Statusbits Emulation

V N Z C
Arithmetical instructions
ADC[.W] dst Add carry to destination * * * * ADDC #0,dst
ADC.B dst Add carry to destination * * * * ADDC.B #0,dst
DADC[.W] dst Add carry decimal to destination * * * * DADD #0,dst
DADC.B dst Add carry decimal to destination * * * * DADD.B #0,dst
DEC[.W] dst Decrement destination * * * * SUB #1,dst
DEC.B dst Decrement destination * * * * SUB.B #1,dst
DECD[.W] dst Double-Decrement destination * * * * SUB #2,dst
DECD.B dst Double-Decrement destination * * * * SUB.B #2,dst
INC[.W] dst Increment destination * * * * ADD #1,dst
INC.B dst Increment destination * * * * ADD.B #1,dst
INCD[.W] dst Increment destination * * * * ADD #2,dst
INCD.B dst Increment destination * * * * ADD.B #2,dst
SBC[.W] dst Subtract carry from destination * * * * SUBC #0,dst
SBC.B dst Subtract carry from destination * * * * SUBC.B #0,dst

Logical instructions
INV[.W] dst Invert destination * * * * XOR #0FFFFh,dst
INV.B dst Invert destination * * * * XOR.B #0FFFFh,dst
RLA[.W] dst Rotate left arithmetically * * * * ADD dst,dst
RLA.B dst Rotate left arithmetically * * * * ADD.B dst,dst
RLC[.W] dst Rotate left through carry * * * * ADDC dst,dst
RLC.B dst Rotate left through carry * * * * ADDC.B dst,dst

Data instructions (common use)
CLR[.W] Clear destination - - - - MOV #0,dst
CLR.B Clear destination - - - - MOV.B #0,dst
CLRC Clear carry bit - - - 0 BIC #1,SR
CLRN Clear negative bit - 0 - - BIC #4,SR
CLRZ Clear zero bit - - 0 - BIC #2,SR
POP dst Item from stack - - - - MOV @SP+,dst
SETC Set carry bit - - - 1 BIS #1,SR
SETN Set negative bit - 1 - - BIS #4,SR
SETZ Set zero bit - - 1 - BIS #2,SR
TST[.W] dst Test destination 0 * * 1 CMP #0,dst
TST.B dst Test destination 0 * * 1 CMP.B #0,dst

Program flow instructions
BR dst Branch to ....... - - - - MOV dst,PC
DINT Disable interrupt - - - - BIC #8,SR
EINT Enable interrupt - - - - BIS #8,SR
NOP No operation - - - - MOV #0h,#0h
RET Return from subroutine - - - - MOV @SP+,PC



Instruction Set MSP430 Family

B-10

B

Instruction set description - alphabetical order

This section catalogues and describes all core and emulated instructions. Some
examples are given for explanation and as application hints.
The suffix .W or no suffix in the instruction mnemonic will result in a word operation.
The suffix .B at the instruction mnemonic will result in a byte operation.

* ADC[.W] Add carry to destination

* ADC.B Add carry to destination

Syntax ADC    dst     or    ADC.W    dst
ADC.B dst

Operation dst + C -> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry C is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed
to by R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD



MSP430 Family Instruction Set

B-11

B

ADD[.W] Add source to destination

ADD.B  Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst -> dst

Description The source operand is added to the destination operand. The source
operand is not affected, the previous contents of the destination are lost.

Status Bits N : Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example R5 is increased by 10. The 'Jump' to TONI is performed on a carry

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The 'Jump' to TONI is performed on a carry

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry



Instruction Set MSP430 Family

B-12

B

ADDC[.W] Add source and carry to destination.

ADDC.B Add source and carry to destination.

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C -> dst

Description The source operand and the carry C are added to the destination
operand. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N:  Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter eleven
words  (20/2 + 2/2) above pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carryin
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter eleven
words above pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carryin
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs



MSP430 Family Instruction Set

B-13

B

AND[.W] source AND destination

AND.B source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst -> dst

Description The source operand and the destination operand are logically AND'ed.
The result is placed into the destination.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The bits set in R5 are used as a mask (#0AA55h) for the word
addressed by TOM. If the result is zero, a branch is taken to label TONI

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically AND'ed with the Lowbyte TOM. If
the result is zero, a branch is taken to label TONI

AND.B #0A5h,TOM ; mask Lowbyte TOM with R5
JZ TONI ;
...... ; Result is not zero



Instruction Set MSP430 Family

B-14

B

BIC[.W] Clear bits in destination

BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst -> dst

Description The inverted source operand and the destination operand are logically
AND'ed. The result is placed into the destination. The source operand is
not affected.

Status Bits N: Not affected
Z:  Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 6 MSBs of the RAM word LEO are cleared.

BIC#0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The 5 MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

Example The Portpins P0 and P1 are cleared.

P0OUT .equ 011h ;Definition of the Portaddress
P0_0 .equ 01h
P0_1 .equ 02h

BIC.B #P0_0+P0_1,&P0OUT ;Set P0.0 and P0.1 to low



MSP430 Family Instruction Set

B-15

B

BIS[.W] Set bits in destination

BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst -> dst

Description The source operand and the destination operand are logically OR'ed.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z:  Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 6 LSB's of the RAM word TOM are set.

BIS #003Fh,TOM  ;  set the 6 LSB's in RAM location TOM

Example Start an A/D-conversion

ASOC .equ 1 ; Start of Conversion bit
ACTL .equ 114h ; ADC-Control Register

BIS #ASOC,&ACTL ; Start A/D-conversion

Example The 3 MSBs of the RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

Example The Portpins P0 and P1 are set to high

P0OUT .equ 011h
P0 .equ 01h
P1 .equ 02h

BIS.B #P0+P1,&P0OUT



Instruction Set MSP430 Family

B-16

B

BIT[.W] Test bits in destination

BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source operand and the destination operand are logically AND'ed.
The result affects only the Status Bits. The source and destination
operands are not affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set ?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example Determine which A/D-Channel is configured by the MUX

ACTL .equ 114h ; ADC Control Register

BIT #4,&ACTL ; Is Channel 0 selected ?
jnz END ; Yes, branch to END

Example If bit 3 of R8 is set, a branch is taken to label TOM.
BIT.B #8,R8
JC TOM



MSP430 Family Instruction Set

B-17

B

BIT (continued)

Example The receive bit RCV of a serial communication is tested. Since while
using the BIT instruction to test a single bit the carry is equal to the state
of the tested bit, the carry is ; used by the subsequent instruction: the
read info is shifted into the register RECBUF.

;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry -> MSB of RECBUF

; cxxx    xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc    cccc
; ^  ^
; MSB  LSB

; Serial communication with MSB is shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry -> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; |  LSB
; MSB



Instruction Set MSP430 Family

B-18

B

* BR, BRANCH Branch to .......... destination

Syntax BR dst

Operation dst -> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64 K
address space. All source addressing modes may be used. The branch
instruction is a word instruction.

Status Bits Status bits are not affected

Examples Examples for all addressing modes are given

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction  MOV  @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction  MOV  X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction  MOV  X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction  MOV  R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word R5
; points to.
; Core instruction  MOV  @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word R5
; points to and increments pointer in R5 afterwards.
; The next time - S/W flow uses R5 pointer - it can
; alter the program execution due to access to
; next address in a table, pointed by R5
; Core instruction  MOV  @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to  by R5 + X  (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV  X(R5),PC
; Indirect indirect R5 + X



MSP430 Family Instruction Set

B-19

B

CALL  Subroutine

Syntax CALL dst

Operation dst    -> tmp dst is evaluated and stored
SP - 2 -> SP
PC -> @SP updated PC to TOS
tmp -> PC saved dst to PC

Description A subroutine call is made to an address anywhere in the 64-K-address
space. All addressing modes may be used. The return address (the
address of the following instruction) is stored on the stack. The call in-
struction is a word instruction.

Status Bits Status bits are not affected

Example Examples for all addressing modes are given

CALL #EXEC ; Call on label EXEC or immediate address (e.g.
; #0A4h)
; SP-2 → SP,  PC+2 → @SP,  @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP-2 → SP,  PC+2 → @SP,  X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 → SP,  PC+2 → @SP,  X(PC) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP-2 → SP,  PC+2 → @SP,  R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word R5
; points
; to
; SP-2 → SP,  PC+2 → @SP,  @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word R5 points
; to and increments pointer in R5. The next time -
; S/W flow uses R5 pointer - it can alter the
; program execution due to access to next address
; in a table, pointed ; to by R5
; SP-2 → SP,  PC+2 → @SP,  @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X  (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 → SP,  PC+2 → @SP,  X(R5) → PC
; Indirect indirect R5 + X



Instruction Set MSP430 Family

B-20

B

* CLR[.W] Clear destination

* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 -> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected

Example RAM word TONI is cleared

CLR TONI ; 0 -> TONI

Example Register R5 is cleared

CLR R5

Example RAM byte TONI is cleared

CLR.B TONI ; 0 -> TONI



MSP430 Family Instruction Set

B-21

B

* CLRC Clear carry bit

Syntax CLRC

Operation 0 -> C

Emulation BIC #1,SR

Description The Carry Bit C is cleared. The clear carry instruction is a word
instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 16bit decimal counter pointed to by R13 is added to a 32bit counter
pointed to by R12.

CLRC ; C=0: Defines start
DADD @R13,0(R12) ; add 16bit counter to Lowword of 32bit
 ; counter
DADC 2(R12) ; add carry to Highword of 32bit counter



Instruction Set MSP430 Family

B-22

B

* CLRN Clear Negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst -> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh)  and the destination operand are
logically AND'ed. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z:  Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The Negative bit in the status register is cleared. This avoids the special
treatment of the called subroutine with negative numbers.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET



MSP430 Family Instruction Set

B-23

B

* CLRZ Clear Zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst -> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and the destination operand are
logically AND'ed. The result is placed into the destination. The clear
zero bit instruction is a word instruction.

Status Bits N: Not affected
Z:  Reset to 0
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The Zero bit in the status register is cleared.

CLRZ



Instruction Set MSP430 Family

B-24

B

CMP[.W] compare source and destination

CMP.B compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst - src)

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1's complement of the source operand plus 1.
The two operands are not affected and, the result is not stored; only the
status bits are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise  (src = dst)
C: Set if there is a carry from the MSB of the result, reset if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example R5 and R6 are compared. If they are equal, the program continues at
the label EQUAL

CMP R5,R6 ; R5 = R6 ?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they not equal, the program branches
to the label ERROR

MOV #NUM,R5 ;number of words to be compared
L$1 CMP &BLOCK1,&BLOCK2 ;Are Words equal ?

JNZ ERROR ;No, branch to ERROR
DEC R5 ;Are all words compared?
JNZ L$1 ;No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are
equal, the program continues at the label EQUAL

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI) ?
JEQ EQUAL ; YES, JUMP



MSP430 Family Instruction Set

B-25

B

CMP.B (continued)

Example Check two Keys, which are connected to the Portpin P0 and P1. If key1
is pressed, the program branches to the label MENU1; if key2 is
pressed, the program branches to MENU2.

P0IN .EQU 010h
KEY1 .EQU 01h
KEY2 .EQU 02h

CMP.B #KEY1,&P0IN
JEQ MENU1
CMP.B #KEY2,&P0IN
JEQ MENU2



Instruction Set MSP430 Family

B-26

B

* DADC[.W] Add carry decimally

* DADC.B Add carry decimally

Syntax DADC dst    o    DADC.W    src,dst
DADC.B dst

Operation dst + C -> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The Carry Bit C is added decimally to the destination

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 4-digit decimal number contained in R5 is added to an 8-digit
decimal number pointed to by R8

CLRC ; Reset carry
; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The 2-digit decimal number contained in R5 is added to an 4-digit
decimal number pointed to by R8

CLRC ; Reset carry
; next instruction's start condition is
; defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs



MSP430 Family Instruction Set

B-27

B

DADD[.W] source and carry added decimally to destination

DADD.B source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C -> dst (decimally)

Description The source operand and the destination operand are treated as four
binary coded decimals (BCD) with positive signs. The source operand
and the carry C are added decimally to the destination operand. The
source operand is not affected, the previous contents of the destination
are lost. The result is not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999.

Set if the result is greater than 99.
V: Undefined

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 8-digit-BCD-number contained in R5 and R6 is added decimally to
a 8-digit-BCD-number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; CLEAR CARRY
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The 2-digit decimal counter in RAMbyte CNT is incremented by one.

CLRC ; clear Carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B        CNT



Instruction Set MSP430 Family

B-28

B

* DEC[.W] Decrement destination

* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst - 1 -> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.
     Set if initial value of destination was 08000h, otherwise reset.
     Set if initial value of destination was 080h, otherwise reset.

Mode Bits OscOff, CPUOff  and GIE are not affected



MSP430 Family Instruction Set

B-29

B

* DEC (continued)

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
range ; EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI-EDE-1(R6)
DEC R10
JNZ L$1

; Do not transfer tables with the routine above with this overlap:

EDE

EDE+254

TONI

TONI+254

Example Memory byte at address LEO is decremented by 1

DEC.B LEO ; Decrement MEM(LEO)

; Move a block of 255 bytes from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV.B #255,LEO

L$1 MOV.B @R6+,TONI-EDE-1(R6)
DEC.B LEO
JNZ L$1



Instruction Set MSP430 Family

B-30

B

* DECD[.W] Double-Decrement destination

* DECD.B Double-Decrement destination

Syntax DECD dst     or     DECD.W    dst
DECD.B dst

Operation dst - 2 -> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.
    Set if initial value of destination was 08001 or 08000h, otherwise

reset.
     Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OscOff , CPUOff  and GIE are not affected

Example R10 is decremented by 2

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by 2

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by 2

DECD.B STATUS



MSP430 Family Instruction Set

B-31

B

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst -> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant #08h is inverted and logically AND'ed with the status
register SR. The result is placed into the SR.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE  is reset.
OscOff  and CPUOff  are not affected

Example The general interrupt enable bit GIE in the status register is cleared to
allow a non disrupted move of a 32bit counter. This ensures that the
counter is not modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are

 ; disabled
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are

; enabled

Note: Disable Interrupt

The instruction following the disable interrupt instruction DINT is executed when
the interrupt request becomes active during execution of DINT. If any code
sequence needs to be protected from being interrupted, the DINT instruction
should be executed at least one instruction before this sequence.



Instruction Set MSP430 Family

B-32

B

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR -> SR  /  .NOT.src .OR. dst -> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically OR'ed. The
result is placed into the SR.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits GIE  is set.
OscOff and CPUOff  are not affected

Example The general interrupt enable bit GIE in the status register is set.

; Interrupt routine of port P0.2 to P0.7
; The interrupt level is the lowest in the system
; P0IN is the address of the register where all port bits are read. P0IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P0IN
BIC.B @SP,&P0IFG ; Reset only accepted flags
EINT ; Preset port 0 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: Jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: Inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the  stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction EINT is executed anyway,
even if an interrupt service request is pending.



MSP430 Family Instruction Set

B-33

B

* INC[.W] Increment destination

* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 -> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The item on the top of a software stack (not the system stack) for byte
data is removed.

SSP .EQU R4
;

INC SSP ; Remove TOSS (top of SW stack) by increment
; Do not use INC.B since SSP is a word register

Example The status byte of a process STATUS is incremented. When it is equal
to eleven, a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL



Instruction Set MSP430 Family

B-34

B

* INCD[.W] Double-Increment destination

* INCD.B Double-Increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 -> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Description The destination operand is incremented by two. The original contents
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The item on the top of the stack is removed without the use of a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two



MSP430 Family Instruction Set

B-35

B

* INV[.W] Invert destination

* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst -> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)

Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example Content of R5 is negated (two's complement).

MOV #00Aeh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h



Instruction Set MSP430 Family

B-36

B

JC Jump if carry set

JHS Jump if higher or same

Syntax JC label
JHS label

Operation if C = 1: PC + 2*offset -> PC
if C = 0: execute following instruction

Description The Carry Bit C of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Program Counter. If C is reset, the next instruction following the jump is
executed. JC (jump if carry/higher or same) is used for the comparison
of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected

Example The signal of input P0IN.1 is used to define or control the program flow.

BIT #10h,&P0IN ; State of signal -> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or same branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15



MSP430 Family Instruction Set

B-37

B

JEQ, JZ Jump if equal, Jump if zero

Syntax JEQ label, JZ label

Operation if Z = 1:  PC + 2*offset -> PC
if Z = 0: execute following instruction

Description The Zero Bit Z of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Program Counter. If Z is not set, the next instruction following the jump
is executed.

Status Bits Status bits are not affected

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM(Table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......



Instruction Set MSP430 Family

B-38

B

JGE Jump if greater or equal

Syntax JGE label

Operation if (N .XOR. V) = 0 then jump to label: PC + 2*offset -> PC
if (N .XOR. V) = 1 then execute following instruction

Description The negative bit N and the overflow bit V of the Status Register are
tested. If both N and V are set or reset, the 10-bit signed offset
contained in the LSB's of the instruction is added to the Program
Counter. If only one is set, the next instruction following the jump is
executed.
This allows comparison of signed integers.

Status Bits Status bits are not affected

Example When the content of R6 is greater or equal the memory pointed to by R7
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......



MSP430 Family Instruction Set

B-39

B

JL Jump if less

Syntax JL label

Operation if (N .XOR. V) = 1 then jump to label: PC + 2*offset -> PC
if (N .XOR. V) = 0 then execute following instruction

Description The negative bit N and the overflow bit V of the Status Register are
tested. If only one is set, the 10-bit signed offset contained in the LSB's
of the instruction is added to the Program Counter. If both N and V are
set or reset, the next instruction following the jump is executed.
This allows comparison of signed integers.

Status Bits Status bits are not affected

Example When the content of R6 is less than the memory pointed to by R7 the
program continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?,  compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......



Instruction Set MSP430 Family

B-40

B

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2*offset -> PC

Description The 10-bit signed offset contained in the LSB's of the instruction is
added to the Program Counter.

Status Bits Status bits are not affected

Hint This 1word instruction replaces the BRANCH instruction in the range of
-511 to +512 words, relative to the current program counter.



MSP430 Family Instruction Set

B-41

B

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2*offset -> PC
if N = 0: execute following instruction

Description The negative bit N of the Status Register is tested. If it is set, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Program Counter. If N is reset, the next instruction following the jump is
executed.

Status Bits Status bits are not affected

Example The result of a computation in R5 is to be subtracted from COUNT. If
the result is negative, COUNT is to be cleared and the program
continues execution in another path.

SUB R5,COUNT ; COUNT - R5 -> COUNT
JN L$1 ; If negative continue with COUNT=0at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......



Instruction Set MSP430 Family

B-42

B

JNC Jump if carry not set

JLO Jump if lower

Syntax JNC label
JNC label

Operation if C = 0: PC + 2*offset -> PC
if C = 1: execute following instruction

Description The Carry Bit C of the Status Register is tested. If it is reset, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Program Counter. If C is set, the next instruction following the jump is
executed. JNC (jump if no carry/lower) is used for the comparison of
unsigned numbers (0 to 65536).

Status Bits status bits are not affected

Example The result in R6 is added in BUFFER. If an overflow occurs an error
handling routine at address ERROR is going to be used.

ADD R6,BUFFER ; BUFFER + R6 -> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ...... ; Error handler start
......
......
......

CONT ...... ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here



MSP430 Family Instruction Set

B-43

B

JNE, JNZ Jump if not equal, Jump if not zero

Syntax JNE label, JNZ label

Operation if Z = 0: PC + 2*offset -> PC
if Z = 1: execute following instruction

Description The Zero Bit Z of the Status Register is tested. If it is reset, the 10-bit
signed offset contained in the LSB's of the instruction is added to the
Program Counter. If Z is set, the next instruction following the jump is
executed.

Status Bits Status bits are not affected

Example Jump to address TONI if R7 and R8 have different contents

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: Jump
...... ; if equal, continue



Instruction Set MSP430 Family

B-44

B

MOV[.W] Move source to destination

MOV.B Move source to destination

Syntax MOV      src,dst      or      MOV.W      src,dst
MOV.B src,dst

Operation src -> dst

Description The source operand is moved to the destination.
The source operand is not affected, the previous contents of the
destination are lost.

Status Bits Status bits are not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The contents of table EDE (word data) are copied to table TOM. The
length of the tables should be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The
length of the tables should be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B  @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......



MSP430 Family Instruction Set

B-45

B

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0,#0

Description No operation is performed. The instruction may be used for the
elimination of instructions during the software check or for defined
waiting times.

Status Bits Status bits are not affected

The NOP instruction is mainly used for two purposes:
• hold one, two or three memory words
• adjust software timing

Note: Other instructions can be used to emulate no operation

Other instructions can be used to emulate no-operation instruction, using different
numbers of cycles and different numbers of code words.

Examples:
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycles, 1 word.



Instruction Set MSP430 Family

B-46

B

* POP[.W] Pop word from stack to destination

* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP   -> dst
SP + 2 -> SP

Emulation MOV     @SP+,dst      or      MOV.W      @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the Stack Pointer (TOS) is moved to the
destination. The Stack Pointer is incremented by two afterwards.

Status Bits Status bits are not affected

Example The contents of R7 and the Status Register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The content of RAM byte LEO is restored from the stack.

POP.B LEO ; The Low byte of the stack is moved to LEO.

Example The content of R7 is restored from the stack.

POP.B R7 ; The Low byte of the stack is moved to R7,
; the High byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the Status Register
are restored from the stack.

POP.B 0(R7) ; The Low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = Low Byte of system stack
: Example:  R7 = 20Ah
;         Mem(R7) = Low Byte of system stack

POP SR

Note: The system Stack Pointer

The system Stack Pointer SP is always incremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
POP instructions; it is also used by the RETI instruction.



MSP430 Family Instruction Set

B-47

B

PUSH[.W] Push word onto stack

PUSH.B Push byte onto stack

Syntax PUSH      src      or      PUSH.W      src
PUSH.B      src

Operation SP - 2 → SP
src → @SP

Description The Stack Pointer is decremented by two, then the source operand is
moved to the RAM word addressed by the Stack Pointer (TOS).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The contents of the Status Register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The content of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8bit peripheral module,
; address TCDAT, onto stack

Note: The system Stack Pointer

The system Stack Pointer SP is always decremented by two, independent of the
byte suffix. This is mandatory since the system Stack Pointer is used not only by
PUSH instruction; it is also used by the interrupt routine service.



Instruction Set MSP430 Family

B-48

B

* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is
moved to the Program Counter. The program continues at the code
address following the subroutine call.

Status Bits Status bits are not affected



MSP430 Family Instruction Set

B-49

B

RETI Return from Interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description 1. The status register is restored to the value at the beginning of the
interrupt service routine. This is performed by replacing the present
contents of SR with the contents of TOS memory. The stack pointer
SP is incremented by two.

2. The program counter is restored to the value at the beginning of
interrupt service. This is the consecutive step after the interrupted
program flow. Restore is performed by replacing present contents of
PC with the contents of TOS memory. The stack pointer SP is
incremented.

Status Bits N:  restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OscOff , CPUOff  and GIE are restored from system stack

Example Main program is interrupted

.........PC - 6

PC - 4

PC - 2

PC

PC + 2

PC + 4

PC + 6

PC + 8

Interrupt request

Interrupt accepted
.........PC=PCi

PCi +2

PCi +4

PCi+n-4

PCi+n-2

PCi+n RETI

PC+2 is stored
onto stack



Instruction Set MSP430 Family

B-50

B

* RLA[.W] Rotate left arithmetically

* RLA.B  Rotate left arithmetically

Syntax RLA dst            or      RLA.W dst
RLA.B dst

Operation C <- MSB <- MSB-1 ....  LSB+1 <- LSB <- 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position. The MSB is shifted
into the carry C, the LSB is filled with 0. The RLA instruction acts as a
signed multiplication with 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

C

7 0

0

byte

15 0word

An overflow occurs if dst ≥ 040h and dst < 0C0h before operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs -
   the initial value is 04000h ≤ dst < 0C000h; otherwise it is reset

Set if an arithmetic overflow occurs:
    the initial value is  040h ≤ dst < 0C0h; otherwise it is reset

Mode Bits OscOff , CPUOff  and GIE are not affected



MSP430 Family Instruction Set

B-51

B

* RLA (continued)

Example R7 is multiplied by 4.

RLA R7 ; Shift left R7  (x 2) - emulated by   ADD  R7,R7
RLA R7 ; Shift left R7  (x 4) - emulated by   ADD  R7,R7

Example Lowbyte of R7 is multiplied by 4.

RLA.B R7 ; Shift left Lowbyte of R7  (x 2) - emulated by
; ADD.B  R7,R7

RLA.B R7 ; Shift left Lowbyte of R7  (x 4) - emulated by
; ADD.B  R7,R7

Note: RLA substitution

The Assembler does not recognize the instruction
   RLA      @R5+ nor RLA.B      @R5+.
It must be substituted by
   ADD     @R5+,-2(R5) or ADD.B     @R5+,-1(R5).



Instruction Set MSP430 Family

B-52

B

* RLC[.W]  Rotate left through carry

* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <- MSB <- MSB-1 ....  LSB+1 <- LSB <- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position. The carry C is
shifted into the LSB, the MSB is shifted into the carry C.

C

7 0

15 0word

byte

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if arithmetic overflow occurs otherwise reset
    Set if 03FFFh < dstinitial < 0C000h, otherwise reset
    Set if 03Fh < dstinitial < 0C0h, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected



MSP430 Family Instruction Set

B-53

B

* RLC (continued)

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C -> R5

Example The information of input P0IN.1 is to be shifted into LSB of R5.

BIT.B #2,&P0IN ; Information -> Carry
RLC R5 ; Carry=P0in.1 -> LSB of R5

Example Content of MEM(LEO) is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

Example The information of input P0IN.1 is to be shifted into LSB of R5.

BIT.B #2,&P0IN ; Information -> Carry
RLC.B R5 ; Carry=P0in.1 -> LSB of R5

; High byte of R5 is reset

Note: RLC and RLC.B emulation

The Assembler does not recognize the instruction

   RLC      @R5+.

It must be substituted by

   ADDC     @R5+,-2(R5).



Instruction Set MSP430 Family

B-54

B

RRA[.W] Rotate right arithmetically

RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB -> MSB, MSB -> MSB-1, ...  LSB+1 -> LSB, LSB -> C

Description The destination operand is shifted right one position. The MSB is shifted
into the MSB, the MSB is shifted into the MSB-1, the LSB+1 is shifted
into the LSB.

C

15 0word

15 0byte

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OscOff , CPUOff  and GIE are not affected



MSP430 Family Instruction Set

B-55

B

RRA (continued)
Example R5 is shifted right one position. The MSB remains with the old value. It

operates equal to an arithmetic division by 2.

RRA R5 ; R5/2 -> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25)
;

PUSH R5 ; hold R5 temporarily using stack
RRA R5 ; R5 x 0.5  ->  R5
ADD @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5  -> R5
RRA R5 ; (1.5 x R5) x 0.5 = 0.75 x R5  -> R5
......
......

; OR
;

RRA R5 ; R5 x 0.5  ->  R5
PUSH R5 ; R5 x 0.5  ->  TOS
RRA @SP ; TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25 x R5  -> TOS
ADD @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5  -> R5
......

Example The Lowbyte of R5 is shifted right one position. The MSB remains with
the old value. It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 -> R5: Operation is on Low byte only
; High byte of R5 is reset

; The value in R5 - Low byte only! - is multiplied by 0.75 (0.5 + 0.25)
;

PUSH.B R5 ; hold Low byte of R5 temporarily using stack
RRA.B R5 ; R5 x 0.5  ->  R5
ADD.B @SP+,R5 ; R5 x 0.5 + R5 = 1.5 x R5  -> R5
RRA.B R5 ; (1.5 x R5) x 0.5 = 0.75 x R5  -> R5
......

; OR
;

RRA.B R5 ; R5 x 0.5  ->  R5
PUSH.B R5 ; R5 x 0.5  ->  TOS
RRA.B @SP ;TOS x 0.5 = 0.5 x R5 x 0.5 = 0.25x R5  -> TOS
ADD.B @SP+,R5 ; R5 x 0.5 + R5 x 0.25 = 0.75 x R5  -> R5
......



Instruction Set MSP430 Family

B-56

B

RRC[.W] Rotate right through carry

RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C -> MSB -> MSB-1 ....  LSB+1 -> LSB -> C

Description The destination operand is shifted right one position. The carry C is
shifted into the MSB, the LSB is shifted into the carry C.

C

15 0word

7 0byte

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Set if initial destination is positive and initial Carry is set, otherwise

reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; PREPARE CARRY FOR MSB
RRC R5 ; R5/2 + 8000h -> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; PREPARE CARRY FOR MSB
RRC.B R5 ; R5/2 + 80h -> R5; Low byte of R5 is used



MSP430 Family Instruction Set

B-57

B

* SBC[.W] Subtract borrow*) from destination

* SBC.B Subtract borrow*) from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C -> dst
dst + 0FFh + C -> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry C is added to the destination operand minus one. The
previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Reset if dst was decremented from 0000 to 0FFFFh, set otherwise

Reset if dst was decremented from 00 to 0FFh, set otherwise
V: Set if initially C=0 and dst=08000h

Set if initially C=0 and dst=080h

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8bit counter pointed to by R13 is subtracted from a 16bit counter
pointed to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow is treated as a .NOT. carry

The borrow is treated as a .NOT. carry:  Borrow Carry bit
   Yes        0
   No        1



Instruction Set MSP430 Family

B-58

B

* SETC Set carry bit

Syntax SETC

Operation 1 -> C

Emulation BIS #1,SR

Description The Carry Bit C is set, an operation which is often necessary.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5=3987 and R6=4137

DSUB ADD #6666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 = 03987 + 6666 = 09FEDh

INV R5 ; Invert this(result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by adding of:

; (10000 - R5 - 1)
; R6 = R6 + R5 + 1
; R6 = 4137 + 06012 + 1 = 1 0150 = 0150



MSP430 Family Instruction Set

B-59

B

* SETN Set Negative bit

Syntax SETN

Operation 1 -> N

Emulation BIS #4,SR

Description The Negative bit N is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected



Instruction Set MSP430 Family

B-60

B

* SETZ Set Zero bit

Syntax SETZ

Operation 1 -> Z

Emulation BIS #2,SR

Description The Zero bit Z is set.

Status Bits N: Not affected
Z:  Set
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected



MSP430 Family Instruction Set

B-61

B

SUB[.W] subtract source from destination

SUB.B subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 -> dst
or
[(dst - src -> dst)]

Description The source operand is subtracted from the destination operand. This is
made by adding the 1's complement of the source operand and the
constant 1. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not
     Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example See example at the SBC instruction

Example See example at the SBC.B instruction

Note: Borrow is treated as a .NOT. carry

The borrow is treated as a .NOT. carry:  Borrow Carry bit
   Yes        0
   No        1



Instruction Set MSP430 Family

B-62

B

SUBC[.W]SBB[.W]      subtract source and borrow/.NOT. carry from destination

SUBC.B,SBB.B    subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C -> dst
or
(dst - src - 1 + C -> dst)

Description The source operand is subtracted from the destination operand. This is
made by adding of the 1's complement of the source operand and the
carry C. The source operand is not affected, the previous contents of
the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset if not
     Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OscOff , CPUOff  and GIE are not affected

Example Two floating point mantissas (24bits) are subtracted .
LSB's are in R13 resp. R10, MSB's are in R12 resp. R9.

SUB.W R13,R10 ; 16bit part, LSB's
SUBC.B R12,R9 ;   8bit part, MSB's

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter
in R10 and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting fron the LSDs

Note: Borrow is treated as a .NOT. carry

The borrow is treated as a .NOT. carry:  Borrow Carry bit
   Yes        0
   No        1



MSP430 Family Instruction Set

B-63

B

SWPB Swap bytes

Syntax SWPB dst

Operation bits 15 to 8 <-> bits 7 to 0

Description The high and the low bytes of the destination operand are exchanged.

Status Bits N: Not affected
Z:  Not affected
C: Not affected
V: Not affected

Mode Bits OscOff , CPUOff  and GIE are not affected

15 08 7

Example

MOV #040BFh,R7 ; 0100000010111111 -> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result



Instruction Set MSP430 Family

B-64

B

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 -> Bit 8 ......... Bit 15

Description The sign of the Low byte is extended into the High byte.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OscOff , CPUOff  and GIE are not affected

15 08 7

Example R7 is loaded with Timer/Counter value. The operation of the sign extend
instruction expands the bit8 to bit15 with the value of bit7.
R7 is added then to R6 where it is accumulated.

MOV.B &TCDAT,R7 ; TCDAT = 080h: . . . .   . . . . 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000
ADD R7,R6 ; add value of EDE to 16bit ACCU



MSP430 Family Instruction Set

B-65

B

* TST[.W] Test destination

* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared to zero. The status bits are set
according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset.

Mode Bits OscOff , CPUOff  and GIE are not affected

Example R7 is tested.  If it is negative continue at R7NEG; if it is positive but not
zero continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ...... ; R7 is positive but not zero

R7NEG ...... ; R7 is negative

R7ZERO ...... ; R7 is zero

Example Lowbyte of R7 is tested.  If it is negative continue at R7NEG; if it is
positive but not zero continue at R7POS.

TST.B R7 ; Test Low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ...... ; Low byte of R7 is positive but not zero

R7NEG ..... ; Lowbyte of R7 is negative

R7ZERO ...... ; Lowbyte of R7 is zero



Instruction Set MSP430 Family

B-66

B

XOR[.W] Exclusive OR of source with destination

XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst -> dst

Description The source operand and the destination operand are OR'ed exclusively.
The result is placed into the destination. The source operand is not
affected.

Status Bits N: Set if MSB of result is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if both operands are negative

Mode Bits OscOff , CPUOff  and GIE are not affected

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits in word TONI on bits
; set in Low byte of R6,

Example Reset bits in Lowbyte of R7 to 0 that are different to bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to '1s'
INV.B R7 ; Invert Lowbyte, Highbyte is 0h



MSP430 Family Instruction Set

B-67

B

Macro instructions emulated with several instructions

The following table shows the instructions which need more words if emulated by the
reduced instruction set. This is not of great concern, because they are rarely used. The
immediate values -1, 0, +1, 2, 4 and 8 are provided by the Constant Generator Registers
R2/CG1 and R3/CG2.

Emulated instruction Instruction flow Comment

ABS dst TST dst ; Absolute value of destination
JN L$0 ; Destination is negative

L$1 ... ; Destination is positive
...
...

L$0 INV dst ; Convert negative destination
INC dst ; to positive
JMP L$1

DSUB src,dst ADD #6666h,src ; Decimal subtraction
INV src ; Source is destroyed!
SETC
DADD src,dst ; DST - SRC (dec)

NEG dst INV dst ; Negation of destination
INC dst

RL dst ADD dst,dst ; Rotate left circularly
ADDC #0,dst

RR dst CLRC ; Rotate right circularly
RRC dst
JNC L$1
BIS #8000h,dst

L$1 ...



Instruction Set MSP430 Family

B-68

B



MSP430 Family EPROM module

C-1

C

C. EPROM Programming

This appendix describes the MSP430 EPROM module. The EPROM module is erasable
with ultraviolet light, and electrically programmable. Devices with an EPROM module are
offered in a windowed package for multiple programming and OTP package, for one
time programmable.



EPROM Module MSP430 Family

C-2

C

C.1 EPROM Operation

The CPU can fetch data and instructions from the EPROM. When the programming
voltage is applied to the TDI/VPP pin, the CPU can also write to the EPROM module.
Reading the EPROM is an identical process to that with other internal peripheral
modules. Both programming and reading can occur on byte or word boundaries.

Erasure

Before programming, the entire EPROM should be erased. Erasing of the EPROM
module is achieved by exposing the transparent window to ultraviolet light.

Note: EPROM exposed to ambient light

Normal ambient light contains the correct wavelength for erasure. When a
device with a transparent window is programmed for use the window should be
covered with an opaque label.

Exposing the EPROM module to ultraviolet light will also cause erasure in the
EEPROM module, if it is on-chip. Any useful data in the EEPROM module must
be reprogrammed after exposure to ultraviolet light.

The data in the EPROM module can be programmed serially via the integrated ‘JTAG’
feature, or via software which is part of the application software. The ‘JTAG’
implementation features an internal mechanism for security purposes. Once the ‘security
fuse’ is activated, no accesses to the device via the ‘JTAG’ functions are possible. The
‘JTAG’ is permanently switched to the by-pass mode.

Programming

The application must provide an external voltage supply to the TDI/VPP pin, to provide
the necessary voltage and current for programming. The minimum programming time is
noted in the electrical characteristics of the device data sheets.

The EPROM control register EPCTL controls the EPROM programming, once the
external voltage is supplied. The erase state is a ‘1’. When EPROM bits are
programmed, they are read as ‘0’.

The programming of the EPROM module can be done for single bytes, words, blocks of
individual length, or with the entire module. All bits that have a final level of ‘1’ must be
erased before programming. The programming can be done on single devices or even
in-system. The supply voltage should be in the range required by the device datasheet.
The levels on the ‘JTAG’ pins are defined in the device datasheet, and are usually
CMOS levels.



MSP430 Family EPROM module

C-3

C

1 2 3 4

5 6 7 8

xxx4h

xxx6h

MSP430 on-chip

Program Memory

Word Format

9 A B C

D E F 0

xxx8h

xxxAh

-  -  -  -

-  -  -  -

1  2

7  8

xxx5h

xxx6h

MSP430 on-chip

Program Memory

Byte Format

 -   -

-  -  -  -

3  4xxx4h

5  6xxx7h

xxx8h

xxx9h

B  C

9  A

F  0xxxAh

D  ExxxBh

EPROM Control Register EPCTL

EPCTL

r-0 r-0 rw-0r-0 r-0 r-0 rw-0r-0
054h

7 0

VPPS EXE

Bit 0: The execute bit EXE initiates and ends the programming to the EPROM
module. The external voltage must be supplied to the TDI/VPP before EXE bit
is set. The timing conditions are noted in the datasheets.

Bit 1: When the VPPS bit is set, the external programming voltage is connected to
the EPROM module. The VPPS bit must be set before EXE bit is set. It can be
reset together with the EXE bit. The VPPS bit must not be cleared between
programming operations.

EPROM Protect

The EPROM access via the serial test and programming interface ‘JTAG’ can be
inhibited when the ‘security fuse’ is activated. The security fuse is activated via serial
instructions shifted into the ‘JTAG’. Activating the fuse is not reversible and any access
to the internal system is disrupted. The by-pass function described in the standard
IEEE1149.1 is active.



EPROM Module MSP430 Family

C-4

C

C.2 FAST Programming Algorithm

The FAST programming cycle is normally used to program the data into the EPROM. A
programmed logical ‘0’ can be erased only by ultraviolet light.
Fast programming uses two types of pulses: prime and final. The length of the prime
puls is typically 100µs (see the latest datasheet). After each prime pulse, the
programmed data is verified. If it fails 25 times, the programming operation was false. If
correct data is read, the final programming pulse is applied; the final programming pulse
is 3 times the number of prime pulses applied.

VPP at TDI/VPP is switched to EPROM: Set VPPS bit
Load 'loop' into r_count, loop = 25

Start-of-subroutine

VPP at TDI/VPP is switched to EPROM: Set VPPS bit

Write data from 'BurnByte' to EPROM
Program one prime pulse (typ. 100us)

Verify byte
No

r_count = r_count -1

r_count >0
Yes

No

Invert data in 'BurnByte'

Yes

Final programming pulse
applied:

3-times N prime pulse

End-of-subroutine: RET



MSP430 Family EPROM module

C-5

C

C3. Program EPROM module via serial data link using ‘JTAG’
feature

The hardware interconnection of the ‘JTAG’ pins is done via four separate pins, plus the
ground or VSS reference level. The ‘JTAG’ pins are TMS, TCK, TDI(/VPP) and
TDO(/TDI).

TMS

TCK

TDI/VPP*

TDO/TDI**

MSP430Xxxx68k

VPP***

TMS

TCK

TDI

TDO

 (11.5V/70mA)

VCC/DVCC

AVCC

VSS/DVSS

AVSS

+ VCC/

SN74HCT125

220

1k

Level Shifter

DVCC

SN74HCT125

Note *: TDI in standard mode,

VPP input during programming

Note **: TDO in standard mode,

Data input TDI during programming

Note ***: see electrical characteristics in 

the latest data sheet 

Switches shown for programming situation

Xout/TCLK****
TCLK

Note ****: Optional, fast incrementing of

address via PC possible



EPROM Module MSP430 Family

C-6

C

C4. Programming EPROM module via controller’s software

The hardware needed to program an EPROM module is quite simple: connect the
required supply to the TDI/VPP pin, and run the proper software algorithm. The software
algorithm that controls the EPROM programming cycle can not run in the same EPROM
module to which the data should be written. It is impossible to read instructions from the
EPROM and write data to it at the same time. The software needs to run from another
memory - from a ROM module, a RAM module or another EPROM module.

TMS*

TCK*

TDI/VPP**

TDO/TDI***

MSP430Xxxx

68k

VPP***

 (11.5V/70mA)

VSS/DVSS

AVCC

Note *: Internally a pull-up resistor is connected to TMS and TCK

Note **: ROM devices of MSP430 have an internal pull-up resistor at pin TDI/VPP

Note ***:

68k

MSP430Pxxx or MSP430Exxx have no internal pull-up resistor. They 

should have an ext. pull-down resistor preventing floating input node.

The TDO/TDI pin should have an ext. pull-down resistor preventing

floating input node for secondary TDI function.



MSP430 Family EPROM module

C-7

C

Programming EPROM module via controller’s software, Example;

The software example writes one byte into the EPROM with the fast programming
algorithm. The code is written position-independent, and will have been loaded (e.g. to
the RAM) before it is used. The programming algorithm runs during the programming
sequence in the RAM, thus avoiding conflict when the EPROM is written. The data
(byte) which should be written is located in the RAM address ‘BurnByte’, and the target
address of the EPROM module is held in the register ‘pointer’ defined with set directive.
The timing is adjusted to a cycle time of 1µs. When another cycle time / processor
frequency is selected, the software should be adjusted according to the operating
conditions.

1  2

7  8

 -   -

-  -  -  -

3  4

x x x x

5  6

B  C

9  A

F  0

D  E

1  2

7  8

 -   -

-  -  -  -

3  4

5  6

B  C

9  A

F  0

D  E

R 9 

Example: Write data in yyyy into location xxxx

BurnByte = (yyyy) = (9Ah)

R9 = xxxx

y y y y

The target EPROM module can not execute the programming code sequence while the
data is being written into it. In the example, a subroutine moves the programming code
sequence into another memory, e.g. into the RAM.



EPROM Module MSP430 Family

C-8

C

Source start address of the code sequence >> R7
Destination start address of the code sequence >> R10

Move one word: (R7) >> (R10)
Increment Source and dest. pointer in R7 and R10

End-of-source code?

End-of-subroutine: RET

Start-of-subroutine: load_burn_routine

;-------------------------------------------------------------
; Definitions used in Subroutine :
; Move programming code sequence into RAM (load_burn_routine)
; Burn a byte into the EPROM area         (RELOC_Burn_EPROM)
;-------------------------------------------------------------

EPCTL .set 054h ; EPROM Control Register
VPPS .set 2 ; Program Voltage bit
EXE .set 1 ; Execution bit
BurnByte .set 0220h ; address of data to be written
Burn_orig .set 0222h ; Start address of burn

; program in the RAM
loops .set 25
r_timer .set r8 ; 1us = 1 cycle
pointer .set r9 ; pointer to the EPROM address

; r9 is saved in the main routine
; before subroutine call is executed

r_count .set r10
lp .set 3 ; dec r_timer : 1 cycle  : loop_t100

; jnz : 2 cycles : loop_t100
ov .set 2 ; mov #(100-ov)/lp,r_timer : 2 cycles

; Load EPROM programming sequence to another location e.g. RAM, Subroutine

;--- Burn subroutine: position independent code!

RAM_Burn_EPROM .set    Burn_orig
load_burn_routine

push r9
push r10
mov #Burn_EPROM,R9 ; load pointer source
mov #RAM_Burn_EPROM,R10 ; load pointer dest.

load_burn1
mov @R9,0(R10) ; move a word
incd R10 ; dest.  pointer + 2
incd R9 ; source pointer + 2



MSP430 Family EPROM module

C-9

C

cmp #Burn_end,R9 ; compare to end_of_table
jne load_burn1
pop r9
pop r10
ret

; Program one byte into EPROM, Subroutine

Burn_EPROM
dint ; ensure correct burn

timing
mov.b #VPPS,&EPCTL ; VPPS on
push r_timer ; save registers
push r_count ; programming subroutine
mov #loops,r_count ; 2 cycles = 2 us

Repeat_Burn
mov.b &BurnByte,0(pointer) ; write to data to EPROM

                ; 6 cycles = 6 us
bis.b #EXE,&EPCTL ; EXE on

; 4 cycles = 4 us
; total cycles VPPon to EXE
; 12 cycles = 12 us (min.)

mov #(100-ov)/lp,r_timer ;:programming pulse of
100us
wait_100 ;:starts, actual time
102us

dec r_timer ;:
jnz wait_100 ;:
bic.b #EXE,&EPCTL ;:EXE / prog. puls off

mov #4,r_timer ;:wait min. 10 us
wait_10 ;:before verifying

dec r_timer ;:programmed EPROM
jnz wait_10 ;:location, actual 13+ us

cmp.b &BurnByte,0(pointer) ; verify data = burned data
jne Burn_EPROM_bad ; data ‡ burned data > jump

; Continue here when data correctly burned into EPROM location
mov.b &BurnByte,0(pointer) ; write to EPROM again
bis.b #EXE,&EPCTL ; EXE on
add #(0ffffh-loop),r_count; Number of loops for

; successful programming
final_puls
 mov #(300-ov)/lp,r_timer ;:programming pulse of
wait_300 ;:3*100us*N starts

dec r_timer ;:
jnz wait_300 ;:
inc r_count ;:
jn final_puls ;:
clr.b &EPCTL ;:EXE off / VPPS off
jmp     Burn_EPROM_end



EPROM Module MSP430 Family

C-10

C

Burn_EPROM_bad
dec r_count ; not ok : decrement loop counter
jnz Repeat_Burn ; loop not ended : do another trial
inv.b &BurnByte ; return the inverted data to flag

; failing the programming attempt
; the EPROM address is unchanged
;

Burn_EPROM_end
pop r_timer
pop r_count
eint
ret

Burn_end


	MSP430 Family
Architecture Guide and Module Library

	Contents

	Figures

	Tables

	List of Notes

	Purpose of guide, and conventions used

	Bit Type Convention for Register Bit

	1 MSP430 Family

	2 Architectural Overview

	3 System Reset, Interrupts and Operating Modes

	4 Memory Organization

	5 CPU, 16bit

	6 Hardware Multiplier

	7 Oscillator and System Clock Generator

	8 Digital I/O Configuration

	9 Universal Timer/Port Module

	10 Timers

	11 Timer_A

	
Universal Synchronous Asynchronous Receive/Transmit USART
	12 USART Peripheral Interface, UART Mode

	13 USART Peripheral Interface, SPI Mode

	14 Liquid Crystal Display Drive

	15 Analog-To-Digital Converter

	16 Miscellaneous Modules

	A
 Peripheral File Map
	B
 Instruction Set Desciption
	C
 EPROM Programming



